
There is always room for one more,
and for many more

Aurora Ramírez

Dept. Computer Science and Numerical Analysis

University of Córdoba, Spain

1st Int. Summer School in Search Based Software Engineering, Cádiz. 30th June 2016

How many aspects should
software engineers

consider when developing
software?

Can we optimise many
metrics in Search Based
Software Engineering?

TOO
MANY!

OF
COURSE!

Content

1. Introduction

2. Many-objective optimisation

3. SBSE needs many-objective optimisation

4. Case study 1: discovery of software architectures

5. Case study 2: composition of web services

6. Open issues

7. Conclusions

There is always room for one more, and for many more. SS-SBSE 2016. [3/23]

Introduction

 The importance of measurement in Soft. Eng.

o Metrics appear in every phase of the software
development process

o Different perspectives of the software quality

 Metrics as fitness functions in SBSE

o A common approach to evaluate candidate solutions

o Well-established frameworks: coupling and cohesion
(design), coverage (testing), time and cost(project
management)...

There is always room for one more, and for many more. SS-SBSE 2016. [4/23]

Introduction

 SBSE can be considered a mature field...

o Optimisation problems in almost every phase

o Experimental studies, some tools and industrial experiences...

o A world-wide community with specialised events

 ...however...

o We mostly use simple problem formulations (1-3 objectives)

o We mostly use traditional algorithms (e.g. NSGA-II)

There is always room for one more, and for many more. SS-SBSE 2016. [5/23]

Many-objective optimisation

 Historical view

o First time mentioned in (Farina and Amato, 2002)

o Identification of key issues (2003-2007)

o Proposals of algorithms, surveys... (recent years)

There is always room for one more, and for many more. SS-SBSE 2016. [6/23]

398 results (2002-2016)

67% of them in the last

3 years

Source: Scopus

 Hot-topic in
Evolutionary
Computation

Many-objective optimisation

 Many-objective optimisation problems (MaOPs)

o The same definition that multi-objective problems (MOPs)

o At least 4 objectives (general agreement)

o Synthetic test problems can be defined with hundreds

There is always room for one more, and for many more. SS-SBSE 2016. [7/23]

),...,,(,

))(),...,(),(()(max

21

21

n

m

xxxxxtosubject

xfxfxfxF

Many-objective optimisation

 The Pareto dominance principle

 Pareto set (PS) and Pareto front (PF)

 The goals are...

o Convergence to the true Pareto front

o Diversity of the returning solution set

There is always room for one more, and for many more. SS-SBSE 2016. [8/23]

)()(},,...,1{)()(},,...,1{

,,

yfxfmjandyfxfmi

iffyxyx

jjii

Many-objective optimisation

There is always room for one more, and for many more. SS-SBSE 2016. [9/23]

Adapted from

(Deb and Jain, 2014)

Diversity

preservation

Main

difficulties Number of non-

dominated

solutions

Performance

measures

Inefficiency

of operators

Complete

representation

of the PF

Visualisation

of trade-offs

Many-objective optimisation

 Current approaches

There is always room for one more, and for many more. SS-SBSE 2016. [10/23]

Technique Algorithms

Relaxed dominance ε-MOEA, GrEA, MDMOEA

Diversity techniques NSGA-II+SDE, SPEA2+SDE

Aggregation techniques MSOPS, MODELS, MOEA/D

Quality indicators HypE, IBEA, SMS-EMOA

Reference set NSGA-III, TC-SEA, TAA

Use of preferences MQEA-PS, PICEA, SBGA

Reduction of objectives MOSS/EMOSS, PCSEA, SIBEA

(von Lücken et al., 2014)

(Li et al., 2015)

SBSE needs many-objective
optimisation

There is always room for one more, and for many more. SS-SBSE 2016. [11/23]

“Measurement is the first step that leads to

control and eventually to improvement. If you

can’t measure something, you can’t understand

it. If you can’t understand it, you can’t control it.

If you can’t control it, you can’t improve it.”
(H. James Harrignton)

SOFTWARE ENGINEERS

NEED METRICS!

SBSE needs many-objective
optimisation

 Metric suites

o (Chidamber and Kemerer, 1994): 6 metrics for OO design

o (Bansiya and Davis, 2002): 11 metrics derived from ISO 9126

o (Abdellatief et al. , 2013): review of 23 metrics for CBSS

 Software quality standards

o ISO 9126: 6 characteristics divided into 27 subcharacteristics

o ISO 25000 (SQuaRE): 8 characteristics and 31 subcharactecristics

 Tools

o SDMetrics (UML diagrams): 132 metrics

o SonarQube (code, documentation, test cases...): 77 metrics

 There is always room for one more, and for many more. SS-SBSE 2016. [12/23]

SBSE needs many-objective
optimisation

There is always room for one more, and for many more. SS-SBSE 2016. [13/23]

2001

2016
2013

2011

2007

SBSE+MOPs

> 100 papers

SBSE+

MaOPs =

9 papers

Sources: Scopus,
SBSE Repository (UCL)

Bi-objective
problems

Multi- / Many-
objective
problems with
traditional
MOEAs

Many-objective
problems with
more than 6
objectives

Case study 1: discovery of software
architectures

 Why we need a many-objective approach?

 There are many metrics beyond coupling and cohesion

 One single solution is not enough for the architect

 Selecting and combining software metrics can be difficult

There is always room for one more, and for many more. SS-SBSE 2016. [14/23]

Search Based Software Engineering

Search Based Software Design

Software Architecture Optimisation

Evolutionary Discovery of Software
Architectures

A. Ramírez, J.R. Romero, S. Ventura. “A comparative study of many-objective evolutionary algorithms for the discovery of software architectures”.

Empirical Software Engineering. 2015. In press.

 [SEARCH PROBLEM] We want to identify

the underlying architecture from an

analysis model (class diagram)

There is always room for one more, and for many more. SS-SBSE 2016. [15/23]

Phenotype Genetic operator

Initialisation
and constraints

• A roulette-based

mutation operator:

 Add a component

 Remove a

component

 Merge two

components

 Split a component

 Move a class

1. Random distribution of classes
 No empty components and no replicated classes

2. Assignment of interfaces to components and connectors
 Isolated or mutually dependant components

Genotype

Case study 1: discovery of software
architectures

 One of the most important quality criteria for component-based

architectures is maintainability (ISO Std. 25000):

 Modularity. A change to one component has a minimal effect on others

 Reusability. An asset can be used in more than one solution

 Analysability. Parts of the software to be modified can be identified

[16/23] There is always room for one more, and for many more. SS-SBSE 2016.

Case study 1: discovery of software
architectures

[17/23] There is always room for one more, and for many more. SS-SBSE 2016.

Case study 1: discovery of software
architectures

 From the evolutionary perspective...

 For 2- and 4-objective problems:

o MOEAs are valid algorithms … as expected!

o NSGA-II overcomes to the rest of algorithms

o SPEA2 and MOEA/D provide good spread of solutions

 For more than 6 objectives:

o Not all the algorithms behave the same, or scale

similarly

o ε-MOEA and HypE apparently overcome now

o NSGA-II is still competitive

o NSGA-III disappoints the expectations

 BUT … the evolutionary perspective may not

match the software architect’s perspective!

There is always room for one more, and for many more. SS-SBSE 2016.

Case study 1: discovery of software
architectures

 From the architect’s perspective, we need to keep in mind that:

[19/23] There is always room for one more, and for many more. SS-SBSE 2016.

Case study 1: discovery of software
architectures

The number of

solutions returned

depends on the

number of metrics

and the selected

algorithm

Time may

hamper its

applicability to

decision-support
tools

The selected
metrics greatly

influence the type

of architectural

solutions

Case study 2: QoS-aware
composition of web services

There is always room for one more, and for many more. SS-SBSE 2016. [20/23]

A well-known and studied

optimisation problem in

Service Oriented

Computing

Existing SBSE

approaches

Metaheuristic

techniques

Problem

formulation

Evolutionary algorithms (MOEAs)

GRASP with Path Relinking

Particle Swarm Optimisation

...

Single-objective (aggregation)

Multi-objective (5-10 QoS properties)

Find the solutions that maximise the global

Quality of Service (QoS): cost, latency...

A candidate solution represents a possible

assignment of concrete services to abstract

tasks defining a structure of composition

Case study 2: QoS-aware
composition of web services

The 9 QoS properties

There is always room for one more, and for many more. SS-SBSE 2016. [21/23]

1. Response Time

2. Availability

3. Reliability

4. Throughput

5. Latency

6. Successability

7. Compliance

8. Best practices

9. Documentation

QoS values from 2507 real-world web services

+

Open issues

There is always room for one more, and for many more. SS-SBSE 2016. [22/23]

SOFTWARE METRICS SEARCH ALGORITHMS

 Study of available metrics

 Definitions based on quality

models and standards

 Quality attributes as objective

functions

 Dependencies between metrics

 New algorithms in many-

objective optimisation

 Adequacy of the families of

algorithms to SBSE problems

 Other metaheuristics (ACO, LS)

 Specific developments for SBSE

Conclusions

 From the point of view of SBSE

o SBSE requires more sophisticated methods

o Experimental studies to assess the performance

 From the point of view of many-objective optimisation

o SBSE might be a source of complex MaOPs

o New techniques beyond evolutionary computation

There is always room for one more, and for many more. SS-SBSE 2016. [23/23]

Search Based Software Engineering can benefit from the
ongoing advances in many-objective optimisation

Aurora Ramírez

Email. aramirez@uco.es

Web. http://www.uco.es/users/aramirez/en

Thank you!

1st Int. Summer School in Search Based Software Engineering, Cádiz. 30th June 2016

There is always room for one more,
and for many more

References

Abdellatief, M., Md Sultan, A.B., Ghani, A.A.A., Jabar, M.A. “A mapping study to investigate component-based
software system metrics”. The Journal of Systems and Software, vol. 86, pp- 587-603. 2013.

Adra, S., Fleming, P. “Diversity management in evolutionary many-objective optimization”. IEEE Transactions on
Evolutionary Computation, vol. 15(2), pp. 183-195. 2011.

Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I. “Software Architecture Optimization Methods: A
Systematic Literature Review”, IEEE Transactions on Software Engineering, vol. 39(5), pp. 658-683. 2013.

Bansiya, J., Davis, C-G. “A hierarchical model for object-oriented design quality assessment”. IEEE Transactions
on Software Engineering, vol. 28(1), pp. 4-17.

Chand, S., Wagner, M. “Evolutionary many-objective optimization: A quick-start guide”. Surveys in Operational
Research and Management Science, vol. 20, pp.35-42. 2015.

Chidamber., S.R., Kemerer, C.F. “A Metrics Suite for Object Oriented Design”. IEEE Transactions on Software
Engineering, vol. 20(6), pp.476-493. 1994.

Deb, K., Jain, H. “An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based
Nondominated Approach, Part I: Solving Problems With Box Constraints”. IEEE Transactions on Evolutionary
Computation, vol. 18(4), pp. 577-601. 2014.

Farina, M., Amato, P. “On the optimal solution definition for many-criteria optimization problems”. Annual Meeting of
the North American Fuzzy Information Processing Society (NAFIPS), pp.233-238 2002.

Harman, M., Afshin Mansouri, S., Zang, Y. “Search Based Software Engineering: Trends, Techniques and
Applications”. ACM Computing Surveys, vol. 45(1), Article 11, 2012.

References

Kalboussi, S., Cehikh, S., Kessentini, M., Ben Said, L. “Preference-Based Many-Objective Evolutionary Testing

Generates Harder Test Cases for Autonomous Agents”. Proc. International Symposium on Search Based Software

Engineering (SSBSE), pp. 245-250. 2013.

Li, B., Li, J., Tang, K.., Yao, X. “Many-Objective Evolutionary Algorithms: A Survey”. ACM Computing Surveys, vol.

48(1), Article 13. 2015.

Mkaouer, W., Kessentini M., Deb, K., Ó Cinnéide, M. “High Dimensional Search-based Software Engineering:

Finding Tradeoffs among 15 Objectives for Automating Software Refactoring using NSGA-III”. Proc. Annual

Conference on Genetic and Evolutionary Computation (GECCO’14), pp. 1263-1270. 2014.

Mkaouer, W., Kessentini, M., Kontchou, P., Deb, K., Bechikh, S., Ouni, A.. “Many-Objective Software

Remodularization using NSGA-III”. ACM Transactions on Software Engineering and Methodology, vol 24(3), No.

17. 2015.

Mkaouer, M.W., Kessentini, M., Bechikh, S., Ó Cinneide, M., Deb, K. “On the use of many quality attributes for

software refactoring: a many-objective search-based software engineering approach”. Empirical Software

Engineering. 2015. In press.

Panichella, A., Kifetew, F.M., Tonella, P. “Reformulating Branch Coverage as a Many-Objective Optimization

Problem”. Proc. IEEE 8th International Conference on Software Testing, Verification and Validation (ICST), pp. 1-

10. 2015.

Parejo, J.A., Segura, S., Fernández, P. Ruiz-Cortés, A. “QoS-aware web services composition using GRASP with

Path Relinking”. Expert Systems with Applications, vol. 41(9), pp. 4211-4223. 2014.

References

Praditwong, K., Yao, X. “How well do multi-objective evolutionary algorithms scale to large problems”. Proc. IEEE
Congress on Evolutionary Computation (CEC’07), pp. 3959-3966. 2007.

Purshouse, R.C., Fleming, P.J. “Evolutionary many-objective optimisation: an exploratory analysis”. IEEE Congress
on Evolutionary Computation (CEC’03), vol. 3, pp. 2066-2073. 2003.

Purshouse, R., Fleming, P. “On the evolutionary optimization of many conflicting objectives”. IEEE Transactions on
Evolutionary Computation, vol. 11(6), pp. 770-784. 2007.

Ramírez, A., Romero, J.R., Ventura, S. “On the Performance of Multiple Objective Evolutionary Algoorithms for
Software Architecture Discovery”. Proc. Annual Conference on Genetic and Evolutionary Computation
(GECCO’14), pp. 1287-1294.

Ramírez, A., Romero, J.R., Ventura, S. “A comparative study of many-objective evolutionary algorithms for the
discovery of software architectures”. Empirical Software Engineering. 2015. In press.

Sayyad, A.S., Ammar, H. “Pareto-Optimal Search-Based Software Engineering (POSBSE): A Literature Survey”.
2nd International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE), pp. 21-
27. 2013.

Schutze, O. Lara, A., Coello Coello, C.A. “On the influence of the number of objectives on the hardness of a
multiobjective optimization problem”. IEEE Transactions on Evolutionary Computation, vol. 15(4), pp. 444-455.

von Lücken, C., Barán, B., Brizuela, C. “A survey on multi-objective evolutionary algorithms for many-objective
problems”. Computational Optimization and Applications, vol. 58(3), pp. 707-756. 2014.

Walker, D.J., Everson, R.M., Fieldsend, J.E. “Visualizing Mutually Nondominating Solution Sets in Many-Objective
Optimization”. IEEE Transactions on Evolutionary Computation, vol. 17(2), pp. 165-184. 2013.

