
Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Evolutionary Mutation Testing Applied
to Object-Oriented Systems

Pedro Delgado-Pérez, Inmaculada Medina-Bulo, Sergio Segura, Antonio
García-Domínguez and Juan José Domínguez-Jiménez

Summer School Search-Based Software Engineering

June 2016
P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 1 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Outline

1 Mutation testing

2 Evolutionary Mutation Testing

3 Research line

4 Implementation

5 Experiments

6 Conclusions

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 2 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Mutation Testing

A brief description

Involves inserting simple syntactic changes in the program using
mutation operators.

This modification creates a new version called mutant.
A non-detected mutant reveals a deficiency in our test suite.

Equivalence: The change cannot be detected by any input.

Original program

if (x > 5) { ... }

Mutant: relational operator replaced

if (x < 5) { ... }

Test case x = 5 x = 10
Original: x > 5 false true
Mutant: x < 5 false false
Classification: Alive Dead

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 3 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Goals in Mutation Testing

Test suite evaluation

Measure how good is a test suite at detecting faults.

Test suite refinement

Improve the test suite to kill (detect) surviving mutants.

Test suite refinement

Search for mutants inducing the design of new test cases.

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 4 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Goals in Mutation Testing

Test suite evaluation

Measure how good is a test suite at detecting faults.

Test suite refinement

Improve the test suite to kill (detect) surviving mutants.

Test suite refinement

Search for mutants inducing the design of new test cases.

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 4 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Phases in Mutation Testing

Four main phases:

1. Definition of mutation operators. 2. Development of a mutation
framework

3. Evaluation of experimental
results

4. Reducing the high cost of
applying mutation testing.

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 5 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Cost Reduction Techniques

Techniques “Do Fewer”

Reduce the number of mutants.

Mutant sampling.

Selective mutation.

High order mutation.

Recent technique

Evolutionary Mutation Testing

J. J. Domínguez- Jiménez, A. Estero-Botaro, I. Medina-Bulo and
A. García-Domínguez
Evolutionary Mutation Testing
Information and Software Technology, 2011.
http://dx.doi.org/10.1016/j.infsof.2011.03.008

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 6 / 22

http://dx.doi.org/10.1016/j.infsof.2011.03.008

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Cost Reduction Techniques

Techniques “Do Fewer”

Reduce the number of mutants.

Mutant sampling.

Selective mutation.

High order mutation.

Recent technique

Evolutionary Mutation Testing

J. J. Domínguez- Jiménez, A. Estero-Botaro, I. Medina-Bulo and
A. García-Domínguez
Evolutionary Mutation Testing
Information and Software Technology, 2011.
http://dx.doi.org/10.1016/j.infsof.2011.03.008

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 6 / 22

http://dx.doi.org/10.1016/j.infsof.2011.03.008

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Evolutionary Mutation Testing

Evolutionary Mutation Testing proposes the generation of a subset of the
mutants by means of an evolutionary algorithm.

This algorithm favors that the subset contains mutants with great potential
to assist the tester in improving the test suite with new test cases.

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 7 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Fitness Function

Execution matrix:

Test cases
Operator Mutant test1 test2 test3

o1 m1 0 1 0
m2 1 0 0
m3 1 0 1

o2 m4 0 0 0
m5 0 0 1
m6 1 0 1

Fitness of mutants/individuals

Best valued (Strong mutants):
Potentially equivalent: not killed by the current test suite.
Resistant hard to kill: killed by a single test case, which does not kill any
other mutants.

Worst valued: killed by many test cases, which in turn kill many other
mutants.

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 8 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Algorithm

AttributeOperator Location

Three fields are used to identify a mutant

Operator: code representing the mutation operator.

Location: order of location in the source file.

Attribute: variant used in the location.

Original program

if (x > 0) {
if (x > 5) {...}

Mutant

if (x > 0) {
if (x < 5) {...}

Operator: set of operators:
1 (relational operator replaced)
2 (arithmetic operator replaced)

Location: possible locations: 1, 2

Attribute: possible variants: >=, <=, <

MUTANT: 1 / 2 / 3

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 9 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Algorithm

AttributeOperator Location

Three fields are used to identify a mutant

Operator: code representing the mutation operator.

Location: order of location in the source file.

Attribute: variant used in the location.

Original program

if (x > 0) {
if (x > 5) {...}

Mutant

if (x > 0) {
if (x < 5) {...}

Operator: set of operators:
1 (relational operator replaced)
2 (arithmetic operator replaced)

Location: possible locations: 1, 2

Attribute: possible variants: >=, <=, <

MUTANT: 1 / 2 / 3

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 9 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Algorithm

AttributeOperator Location

Three fields are used to identify a mutant

Operator: code representing the mutation operator.

Location: order of location in the source file.

Attribute: variant used in the location.

Original program

if (x > 0) {
if (x > 5) {...}

Mutant

if (x > 0) {
if (x < 5) {...}

Operator: set of operators:
1 (relational operator replaced)
2 (arithmetic operator replaced)

Location: possible locations: 1, 2

Attribute: possible variants: >=, <=, <

MUTANT: 1 / 2 / 3

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 9 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Algorithm

Individual generation

Individuals in a generation are:
1 Randomly generated.
2 Generated by reproductive operators*:

Mutation operators.
Crossover operators.

* Selection of individuals: roulette wheel method.

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 10 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Algorithm

Mutation operators:

AttributeOperator Location

Crossover operators:

Attribute1Operator1 Location1

Attribute1Operator1 Location1

Attribute2Operator2 Location2

Attribute2Operator2 Location2

Attribute2Operator1 Location2

Attribute1Operator2 Location1

Attribute1Operator2 Location2

Attribute2Operator1 Location1

Crossover point

Individual 1

Individual 2

Crossover point

Individual 1

Individual 2

CROSSOVER

CROSSOVER

Child 1

Child 2

Child 1

Child 2

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 11 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Algorithm

Mutation operators:

AttributeOperator Location

Crossover operators:

Attribute1Operator1 Location1

Attribute1Operator1 Location1

Attribute2Operator2 Location2

Attribute2Operator2 Location2

Attribute2Operator1 Location2

Attribute1Operator2 Location1

Attribute1Operator2 Location2

Attribute2Operator1 Location1

Crossover point

Individual 1

Individual 2

Crossover point

Individual 1

Individual 2

CROSSOVER

CROSSOVER

Child 1

Child 2

Child 1

Child 2

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 11 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Research line

Motivation

One of the most used programming languages a.

Search for cost reduction techniques.

Evolutionary Mutation Testing had only been applied to WS-BPEL.

a 3rd position in the TIOBE index in June 2016

Goal

Is Evolutionary Mutation Testing useful in other contexts?

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 12 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Research line

Motivation

One of the most used programming languages a.

Search for cost reduction techniques.

Evolutionary Mutation Testing had only been applied to WS-BPEL.

a 3rd position in the TIOBE index in June 2016

Goal

Is Evolutionary Mutation Testing useful in other contexts?

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 12 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Mutation operators

Class mutation operators

Related to object-oriented features:
Inheritance
Polymorphism
Method overloading

Set of mutation operators

The set of operators should be defined for each programming language:
1 Common to other programming languages (Java and C#).
2 Specific to the language.

P. Delgado-Pérez, I. Medina-Bulo, J. J. Domínguez-Jiménez,
A. García-Domínguez and F. Palomo-Lozano.
Class mutation operators for C++ object-oriented systems
Annals of telecommunications, 2015.
http://dx.doi.org/10.1007/s12243-014-0445-4

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 13 / 22

http://dx.doi.org/10.1007/s12243-014-0445-4

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Example

Example “Inheritance” block: IOD (Overriding method deletion)

Original:
class A { class B: public A{

...
int method(){... ...}; int method(){... ...};

}; };

Mutant:
class A { class B: public A{

...
int method(){... ...}; /*Deleted*/

}; };

Main differences:

Class operators are less prolific than traditional operators.

High percentage of equivalence.

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 14 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Example

Example “Inheritance” block: IOD (Overriding method deletion)

Original:
class A { class B: public A{

...
int method(){... ...}; int method(){... ...};

}; };

Mutant:
class A { class B: public A{

...
int method(){... ...}; /*Deleted*/

}; };

Main differences:

Class operators are less prolific than traditional operators.

High percentage of equivalence.

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 14 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

C++ mutation tool flow chart

Analyze
the program

Generate
the mutants

Execute the
test suite

Original
C++ program

Class mutation
operators

Test suite

 Dead
mutant

 Invalid
mutant

 Alive
 mutant

Mutant
directories

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 15 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

GAmera flow chart

Genetic algorithm Converter

Analyzer

Execution engine
Mutant WS−BPEL 2.0 program

Original WS−BPEL 2.0 program Mutation operator analysis

MUTANT GENERATOR

mutantsmutantsequivalent

mutants

suite

Potentially

Test

Killed Stillborn

Its modular architecture allows to reuse the the genetic algorithm with
different programming languages.

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 16 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

GAmera / C++ mutation tool

Connection between applications

Development of a new application to connect GAmera and the C++
mutation tool.
Tasks of this application:

Transform GAmera execution commands into understandable commands for
the mutation tool.
Translate the output between both applications.

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 17 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Experiments

Evolutionary Mutation Testing VS Random Selection

1 Random selection: mutants selected one by one randomly.
2 Evolutionary Mutation Testing: generations are produced according to

these parameters*:
Population size: 5 %
New individuals randomly generated: 10 %
New individuals generated by reproductive operators: 90 %
- Mutation probability: 30 %
- Crossover probability: 70 %

* These parameters were experimentally found as the best.

Termination

Stop condition: generation of a percentage of
the total of strong mutants:

75 %

90 %

30 executions with different seeds.

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 18 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Experiments

Evolutionary Mutation Testing VS Random Selection

1 Random selection: mutants selected one by one randomly.
2 Evolutionary Mutation Testing: generations are produced according to

these parameters*:
Population size: 5 %
New individuals randomly generated: 10 %
New individuals generated by reproductive operators: 90 %
- Mutation probability: 30 %
- Crossover probability: 70 %

* These parameters were experimentally found as the best.

Termination

Stop condition: generation of a percentage of
the total of strong mutants:

75 %

90 %

30 executions with different seeds.

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 18 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Experiments

Case studies

Three programs with different number of mutants and strong mutants*.

We use the test suite distributed with the programs.

* Strong mutants are known thanks to a previous execution.

Program 1 Program 2 Program 3 Total

Total mutants 219 614 1,146 1,979
Valid 208 433 681 1,322
Strong 103 159 348 610
% Strong mutants 49.5% 36.7% 51.1% 46.1%
Test cases 61 57 46 -

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 19 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Experiments

Result 1

EMT outperforms Random in all
the cases.

Result 2

The result is better with a low
threshold (75 %).

Result 3

The efficiency does not scale with
the number of mutants.

Result 4

The lower the percentage of
strong mutants, the more efficient.

Threshold 75% 90%

Technique EMT Random EMT Random

Program 1
Mean 69.87 75.11 85.35 89.07
Median 70.09 75.79 85.38 89.72
MIN 62.55 67.57 78.99 82.64
Max 76.71 81.27 90.41 93.15
SD 3.57 3.57 2.67 2.86

Program 2
Mean 64.91 74.93 84.32 89.98
Median 64.74 74.83 84.12 90.22
Min 60.58 69.70 77.85 85.01
Max 71.49 80.61 89.73 93.64
SD 2.59 2.78 3.34 1.78

Program 3
Mean 69.96 74.43 87.84 89.76
Median 70.15 74.34 88.09 89.75
Min. 66.05 71.64 83.33 86.21
Max. 73.38 78.88 90.13 93.71
SD 1.98 2.00 1.60 1.58

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 20 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Experiments

Result 1

EMT outperforms Random in all
the cases.

Result 2

The result is better with a low
threshold (75 %).

Result 3

The efficiency does not scale with
the number of mutants.

Result 4

The lower the percentage of
strong mutants, the more efficient.

Threshold 75% 90%

Technique EMT Random EMT Random

Program 1
Mean 69.87 75.11 85.35 89.07
Median 70.09 75.79 85.38 89.72
MIN 62.55 67.57 78.99 82.64
Max 76.71 81.27 90.41 93.15
SD 3.57 3.57 2.67 2.86

Program 2
Mean 64.91 74.93 84.32 89.98
Median 64.74 74.83 84.12 90.22
Min 60.58 69.70 77.85 85.01
Max 71.49 80.61 89.73 93.64
SD 2.59 2.78 3.34 1.78

Program 3
Mean 69.96 74.43 87.84 89.76
Median 70.15 74.34 88.09 89.75
Min. 66.05 71.64 83.33 86.21
Max. 73.38 78.88 90.13 93.71
SD 1.98 2.00 1.60 1.58

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 20 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Experiments

Result 1

EMT outperforms Random in all
the cases.

Result 2

The result is better with a low
threshold (75 %).

Result 3

The efficiency does not scale with
the number of mutants.

Result 4

The lower the percentage of
strong mutants, the more efficient.

Threshold 75% 90%

Technique EMT Random EMT Random

Program 1
Mean 69.87 75.11 85.35 89.07
Median 70.09 75.79 85.38 89.72
MIN 62.55 67.57 78.99 82.64
Max 76.71 81.27 90.41 93.15
SD 3.57 3.57 2.67 2.86

Program 2
Mean 64.91 74.93 84.32 89.98
Median 64.74 74.83 84.12 90.22
Min 60.58 69.70 77.85 85.01
Max 71.49 80.61 89.73 93.64
SD 2.59 2.78 3.34 1.78

Program 3
Mean 69.96 74.43 87.84 89.76
Median 70.15 74.34 88.09 89.75
Min. 66.05 71.64 83.33 86.21
Max. 73.38 78.88 90.13 93.71
SD 1.98 2.00 1.60 1.58

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 20 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Experiments

Result 1

EMT outperforms Random in all
the cases.

Result 2

The result is better with a low
threshold (75 %).

Result 3

The efficiency does not scale with
the number of mutants.

Result 4

The lower the percentage of
strong mutants, the more efficient.

Threshold 75% 90%

Technique EMT Random EMT Random

Program 1
Mean 69.87 75.11 85.35 89.07
Median 70.09 75.79 85.38 89.72
MIN 62.55 67.57 78.99 82.64
Max 76.71 81.27 90.41 93.15
SD 3.57 3.57 2.67 2.86

Program 2
Mean 64.91 74.93 84.32 89.98
Median 64.74 74.83 84.12 90.22
Min 60.58 69.70 77.85 85.01
Max 71.49 80.61 89.73 93.64
SD 2.59 2.78 3.34 1.78

Program 3
Mean 69.96 74.43 87.84 89.76
Median 70.15 74.34 88.09 89.75
Min. 66.05 71.64 83.33 86.21
Max. 73.38 78.88 90.13 93.71
SD 1.98 2.00 1.60 1.58

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 20 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Achievements

1 C++ mutation tool connected with the evolutionary
algorithm.

2 Results confirms Evolutionary Mutation Testing as
an efficient cost reduction technique.

Future work

Confirm this tendency in new experiments.

Introduce changes in the genetic algorithm.

Check how this technique helps refine the test suite.

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 21 / 22

Mutation testing Evolutionary Mutation Testing Research line Implementation Experiments Conclusions

Summer School SBSE 2016

Pedro Delgado-Pérez
University of Cádiz

pedro.delgado@uca.es
https://ucase.uca.es/pedro-delgado-perez

P. Delgado-Pérez UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems SS-SBSE 22 / 22

pedro.delgado@uca.es
https://ucase.uca.es/pedro-delgado-perez

	Mutation testing
	Evolutionary Mutation Testing
	Research line
	Implementation
	Experiments
	Conclusions

