Evolutionary Mutation Testing Applied to Object-Oriented Systems

Pedro Delgado-Pérez, Inmaculada Medina-Bulo, Sergio Segura, Antonio García-Domínguez and Juan José Domínguez-Jiménez

Summer School Search-Based Software Engineering

June 2016

P. Delgado-Pérez		UCASE (University of Cádiz)
Evolutionary Mutation Testing Applied to Object-Oriented Systems	SS-SBSE	1 / 22

Mutation testing	Evolutionary Mutation Testing	Research line	Implementation	Experiments	Conclusions
Outline					

Mutation testing

2 Evolutionary Mutation Testing

3 Research line

Implementation 4

5 Experiments

6 Conclusions

P. Delgado-P

érez	ι	JCAS
Mutation Testing Applied to Object-Oriented Systems	SS-SBSE	

2/22

Mutation testing	Evolutionary Mutation Testing	Research line	Implementation	Experiments	Conclusions
Mutation Te	esting				

A brief description

- Involves inserting simple syntactic changes in the program using mutation operators.
- This modification creates a new version called mutant.
- A non-detected mutant reveals a deficiency in our test suite.
- Equivalence: The change cannot be detected by any input.

Original program						
if	(x >	5)	{		}	
Mutant: relational operator replaced						
Mutant: re	ationa	al op	er	ator	replaced	

Test case	x = 5	x = 10
Original: $x > 5$	false	true
Mutant: $x < 5$	false	false
Classification:	Alive	Dead

P. Delgado-Pérez

Mutation testing	Evolutionary Mutation Testing	Research line	Implementation	Experiments	Conclusions
Goals in M	utation Testing				

Test suite evaluation

Measure how good is a test suite at detecting faults.

Test suite refinement

Improve the test suite to kill (detect) surviving mutants.

P. Delgado-Pérez			
Evolutionary Mutation	Testing Applied	to Object-Oriented	Systems

SS-SBSE

Mutation testing	Evolutionary Mutation Testing	Research line	Implementation	Experiments	Conclusions
Goals in M	lutation Testing				

Test suite evaluation

Measure how good is a test suite at detecting faults.

Test suite refinement

Improve the test suite to kill (detect) surviving mutants.

Test suite refinement

Search for mutants inducing the design of new test cases.

2. Delgado-Pérez	ι	JCASE (University of Cádiz)
volutionary Mutation Testing Applied to Object-Oriented Systems	SS-SBSE	4 / 22

Four main phases:

1. Definition of mutation operators.

3. Evaluation of experimental results

2. Development of a mutation framework

4. Reducing the high cost of applying mutation testing.

P. Delgado-Pérez

UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems

SS-SBSE

Mutation testing	Evolutionary Mutation Testing	Research line	Implementation	Experiments	Conclusions
Cost Reduc	tion Techniques				

Techniques "Do Fewer"

Reduce the number of mutants.

- Mutant sampling.
- Selective mutation.
- High order mutation.

Mutation testing	Evolutionary Mutation Testing	Research line	Implementation	Experiments	Conclusions
Cost Reduc	tion Techniques				

Techniques "Do Fewer"

Reduce the number of mutants.

- Mutant sampling.
- Selective mutation.
- High order mutation.

Recent technique

Evolutionary Mutation Testing

J. J. Domínguez- Jiménez, A. Estero-Botaro, I. Medina-Bulo and A. García-Domínguez Evolutionary Mutation Testing Information and Software Technology, 2011. http://dx.doi.org/10.1016/j.infsof.2011.03.008

P. Delgado-Pérez

UCASE (University of Cádiz)

Evolutionary Mutation Testing proposes the generation of a subset of the mutants by means of an **evolutionary algorithm**.

This algorithm favors that the subset contains **mutants with great potential** to assist the tester in improving the test suite with new test cases.

P. Delgado-Pérez		UCASE (University of Cádiz)
Evolutionary Mutation Testing Applied to Object-Oriented Systems	SS-SBSE	7 / 22

Execution matrix:

		Test cases			
Operator	Mutant	$test_1$	$test_2$	$test_3$	
01	m_1	0	1	0	
	m_2	1	0	0	
	m_3	1	0	1	
02	m_4	0	0	0	
	m_5	0	0	1	
	m_6	1	0	1	

Fitness of mutants/individuals

- Best valued (Strong mutants):
 - Potentially equivalent: not killed by the current test suite.
 - Resistant hard to kill: killed by a single test case, which does not kill any other mutants.
- Worst valued: killed by many test cases, which in turn kill many other mutants.

P. Delgado-Pérez

UCASE (University of Cádiz)

Mutatio	n testing	Evolutionary Mutat	ion Testing	Research line	Implementation	Experiments	Conclusions
Algo	orithm						
			Operator	Location	Attribute		
Three fields are used to identify a mutant							
• Operator : code representing the mutation operator.							
• Location: order of location in the source file.							

• Attribute: variant used in the location.

- Operator: set of operators:
 - 1 (relational operator replaced)
 - 2 (arithmetic operator replaced)
- Location: possible locations: 1, 2
- Attribute: possible variants: >=, <=, <

MUTANT: 1 / 2 / 3

Mutation testing	Evolutionary Mutation Testing	Research line	Implementation	Experiments	Conclusions	
Algorithm						
	Operator	Location	Attribute			
Three fields are used to identify a mutant						
• Operator : code representing the mutation operator.						
	••••••••••••••••••••••••••••••••••••••		- 41 -			

- Location: order of location in the source file.
- Attribute: variant used in the location.

- Operator: set of operators:
 - 1 (relational operator replaced)
 - 2 (arithmetic operator replaced)
- Location: possible locations: 1, 2
- Attribute: possible variants: >=, <=, <</p>

MUTANT: 1 / 2 / 3

Mutation testing	Evolutionary Mutation	Testing	Research line	Implementation	Experiments Co	nclusions
Algorithm						
	0	Operator	Location	Attribute		
Three fie	lds are used to	identify a	a mutant			
• Operator : code representing the mutation operator.						

- Location: order of location in the source file.
- Attribute: variant used in the location.

- Operator: set of operators:
 - 1 (relational operator replaced)
 - 2 (arithmetic operator replaced)
- Location: possible locations: 1, 2
- Attribute: possible variants: >=, <=, <

MUTANT: 1 / 2 / 3

Algorithm

Individual generation

Individuals in a generation are:

- Randomly generated.
- Generated by reproductive operators*:
 - Mutation operators.
 - Crossover operators.

* Selection of individuals: roulette wheel method.

Mutation testing	Evolutionary Mutation Testing	Research line	Implementation	Experiments	Conclusions
Algorithm					

Mutation operators:

Operator	Location	Attribute
----------	----------	-----------

Mutation testing	Evolutionary Mutation Testing	Research line	Implementation	Experiments	Conclusions
Algorithm					

Mutation operators:

Operator	Location	Attribute
----------	----------	-----------

Crossover operators:

P. Delgado-Pérez		UCASE (University of Cádiz)
Evolutionary Mutation Testing Applied to Object-Oriented Systems	SS-SBSE	11 / 22

Motivation

- One of the most used programming languages ^a.
- Search for cost reduction techniques.
- Evolutionary Mutation Testing had only been applied to WS-BPEL.
- ^a 3rd position in the TIOBE index in June 2016

Goal

Is Evolutionary Mutation Testing useful in other contexts?

P. Delgado-Pérez

UCASE (University of Cádiz)

Motivation

- One of the most used programming languages ^a.
- Search for cost reduction techniques.
- Evolutionary Mutation Testing had only been applied to WS-BPEL.
- ^a 3rd position in the TIOBE index in June 2016

Goal

Is Evolutionary Mutation Testing useful in other contexts?

P. Delgado-Pérez

UCASE (University of Cádiz)

Mutation testing	Evolutionary Mutation Testing	Research line	Implementation	Experiments	Conclusions
Mutation or	perators				

Class mutation operators

- Related to object-oriented features:
 - Inheritance
 - Polymorphism
 - Method overloading

Set of mutation operators

• The set of operators should be defined for each programming language:

- Common to other programming languages (Java and C#).
- Output Specific to the language.

P. Delgado-Pérez, I. Medina-Bulo, J. J. Domínguez-Jiménez, A. García-Domínguez and F. Palomo-Lozano. Class mutation operators for C++ object-oriented systems *Annals of telecommunications*, 2015. http://dx.doi.org/10.1007/s12243-014-0445-4

Mutation testing	Evolutionary Mutation Testing	Research line	Implementation	Experiments	Conclusions
Example					

Example "Inheritance" block: IOD (Overriding method deletion)

P. Delgado-Pérez		UCASE (University of Cádiz)
Evolutionary Mutation Testing Applied to Object-Oriented Systems	SS-SBSE	14 / 22

Mutation testing	Evolutionary Mutation Testing	Research line	Implementation	Experiments	Conclusions
Example					

Example "Inheritance" block: IOD (Overriding method deletion)

Main differences:

- Class operators are less prolific than traditional operators.
- High percentage of equivalence.

P. Delgado-Pérez

UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems

P. Delgado-Pérez

UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems

Its **modular architecture** allows to reuse the the genetic algorithm with different programming languages.

P. Delgado-Pérez		UCASE (University of Cádiz)
Evolutionary Mutation Testing Applied to Object-Oriented Systems	SS-SBSE	16 / 22

- Transform GAmera execution commands into understandable commands for the mutation tool.
- Translate the output between both applications.

Mutatio	on testing	Evolutionary Mutation Testing	Research line	Implementation	Experiments	Conclusions
Exp	periment	S				
	Evolution	ory Mutation Tasting	/C Dandam C	alaction		
	Evolution	ary mutation resting v	/S Random S	election		
	Ran	dom selection: mutar	nts selected o	ne by one rando	omly.	
	2 Evol thes	utionary Mutation Te e parameters*:	esting: genera	ations are produ	iced accordir	ng to
	۲	Population size:			5%	
	۲	New individuals rando	mly generated		10%	
	۲	New individuals generation	ated by reprod	uctive operators	: 90 %	
	۲	- Mutation probability:			30 %	
	۲	- Crossover probability:			70 %	
	* Th	ese parameters were	experimentally	y found as the b	best.	

Mutation testing	Evolutionary Mutation Testing	Research line	Implementation	Experiments	Conclusions
Experime	ents				
_					
Evolut	ionary Mutation Testing '	VS Random S	election		
0 R	andom selection: muta	nts selected o	ne by one rand	omly.	
E E the second secon	volutionary Mutation Te nese parameters*:	esting: genera	ations are prod	uced accordi	ng to
	• Population size:			5%	
	New individuals rando	mly generated	:	10 %	
	 New individuals gener 	ated by reprod	uctive operators	s: 90 %	
	 Mutation probability: 			30 %	, I
	• - Crossover probability:			70 %	,

* These parameters were experimentally found as the best.

Termination

Stop condition: generation of a percentage of the total of strong mutants:

- 75%
- 90%

30 executions with different seeds.

P. Delgado-Pérez

Evolutionary Mutation Testing Applied to Object-Oriented Systems

18 / 22

Mutation testing	Evolutionary Mutation Testing	Research line	Implementation	Experiments	Conclusions
Experiment	S				

Case studies

- Three programs with different number of mutants and strong mutants*.
- We use the test suite distributed with the programs.
- * Strong mutants are known thanks to a previous execution.

	Program 1	Program 2	Program 3	Total
Total mutants	219	614	1,146	1,979
Valid	208	433	681	1,322
Strong	103	159	348	610
% Strong mutants	49.5%	36.7%	51.1%	46.1%
Test cases	61	57	46	-

P. Delgado-Pérez		UCASE (University of Cádiz)
Evolutionary Mutation Testing Applied to Object-Oriented Systems	SS-SBSE	19 / 22

Result 1

EMT outperforms Random in all the cases.

Result 2

The result is better with a low threshold (75%).

Result 3

The efficiency does not scale with the number of mutants.

Result 4

Threshold	7	5%	9	0%
Technique	EMT	Random	EMT	Random
Program 1				
Mean	69.87	75.11	85.35	89.07
Median	70.09	75.79	85.38	89.72
MIN	62.55	67.57	78.99	82.64
Max	76.71	81.27	90.41	93.15
SD	3.57	3.57	2.67	2.86
Program 2				
Mean	64.91	74.93	84.32	89.98
Median	64.74	74.83	84.12	90.22
Min	60.58	69.70	77.85	85.01
Max	71.49	80.61	89.73	93.64
SD	2.59	2.78	3.34	1.78
Program 3				
Mean	69.96	74.43	87.84	89.76
Median	70.15	74.34	88.09	89.75
Min.	66.05	71.64	83.33	86.21
Max.	73.38	78.88	90.13	93.71
SD	1.98	2.00	1.60	1.58

P. Delgado-Pérez		UCASE (University of Cádiz)
Evolutionary Mutation Testing Applied to Object-Oriented Systems	SS-SBSE	20 / 22

Result 1

EMT outperforms Random in all the cases.

Result 2

The result is better with a low threshold (75%).

Result 3

The efficiency does not scale with the number of mutants.

Result 4

Threshold	7	5%	9	0%
Technique	EMT	Random	EMT	Random
Program 1				
Mean	69.87	75.11	85.35	89.07
Median	70.09	75.79	85.38	89.72
MIN	62.55	67.57	78.99	82.64
Max	76.71	81.27	90.41	93.15
SD	3.57	3.57	2.67	2.86
Program 2				
Mean	64.91	74.93	84.32	89.98
Median	64.74	74.83	84.12	90.22
Min	60.58	69.70	77.85	85.01
Max	71.49	80.61	89.73	93.64
SD	2.59	2.78	3.34	1.78
Program 3				
Mean	69.96	74.43	87.84	89.76
Median	70.15	74.34	88.09	89.75
Min.	66.05	71.64	83.33	86.21
Max.	73.38	78.88	90.13	93.71
SD	1.98	2.00	1.60	1.58

P. Delgado-Pérez		UCASE (University of Cádiz)
Evolutionary Mutation Testing Applied to Object-Oriented Systems	SS-SBSE	20 / 22

Experiments

Result 1

EMT outperforms Random in all the cases.

Result 2

The result is better with a low threshold (75%).

Result 3

The efficiency does not scale with the number of mutants.

Result 4

Threshold	75%		90%	
Technique	EMT	Random	EMT	Random
Program 1				
Mean	69.87	75.11	85.35	89.07
Median	70.09	75.79	85.38	89.72
MIN	62.55	67.57	78.99	82.64
Max	76.71	81.27	90.41	93.15
SD	3.57	3.57	2.67	2.86
Program 2				
Mean	64.91	74.93	84.32	89.98
Median	64.74	74.83	84.12	90.22
Min	60.58	69.70	77.85	85.01
Max	71.49	80.61	89.73	93.64
SD	2.59	2.78	3.34	1.78
Program 3				
Mean	69.96	74.43	87.84	89.76
Median	70.15	74.34	88.09	89.75
Min.	66.05	71.64	83.33	86.21
Max.	73.38	78.88	90.13	93.71
SD	1.98	2.00	1.60	1.58

P. Delgado-Pérez		UCASE (University of Cádiz)
Evolutionary Mutation Testing Applied to Object-Oriented Systems	SS-SBSE	20 / 22

Result 1

EMT outperforms Random in all the cases.

Result 2

The result is better with a low threshold (75%).

Result 3

The efficiency does not scale with the number of mutants.

Result 4

Threshold	75%		90%	
Technique	EMT	Random	EMT	Random
Program 1				
Mean	69.87	75.11	85.35	89.07
Median	70.09	75.79	85.38	89.72
MIN	62.55	67.57	78.99	82.64
Max	76.71	81.27	90.41	93.15
SD	3.57	3.57	2.67	2.86
Program 2				
Mean	64.91	74.93	84.32	89.98
Median	64.74	74.83	84.12	90.22
Min	60.58	69.70	77.85	85.01
Max	71.49	80.61	89.73	93.64
SD	2.59	2.78	3.34	1.78
Program 3				
Mean	69.96	74.43	87.84	89.76
Median	70.15	74.34	88.09	89.75
Min.	66.05	71.64	83.33	86.21
Max.	73.38	78.88	90.13	93.71
SD	1.98	2.00	1.60	1.58

P. Delgado-Pérez		UCASE (University of Cádiz)
Evolutionary Mutation Testing Applied to Object-Oriented Systems	SS-SBSE	20 / 22

Achievements

- C++ mutation tool connected with the evolutionary algorithm.
- Results confirms Evolutionary Mutation Testing as an efficient cost reduction technique.

Future work

- Confirm this tendency in new experiments.
- Introduce changes in the genetic algorithm.
- Check how this technique helps refine the test suite.

Summer School SBSE 2016

Pedro Delgado-Pérez

University of Cádiz

pedro.delgado@uca.es https://ucase.uca.es/pedro-delgado-perez

Ρ.	De	laa	ıda	-Pi	érez
	_	_	_		

UCASE (University of Cádiz)

Evolutionary Mutation Testing Applied to Object-Oriented Systems

SS-SBSE