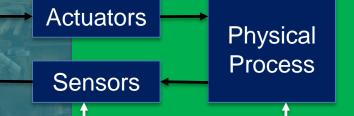


GOI ESKOLA POLITEKNIKOA ESCUELA POLITÉCNICA SUPERIOR

Test Optimization of Configurable Cyber-Physical Systems with Search Algorithms

Aitor Arrieta

Collaborators: Goiuria Sagardui, Leire Etxeberria Shuai Wang


Summer School in Search Based Software Engineering Cádiz 30/06/2016

Cyber-Physical Systems

Cyber- Physical System

Cyber Layer

Environment

Temperature

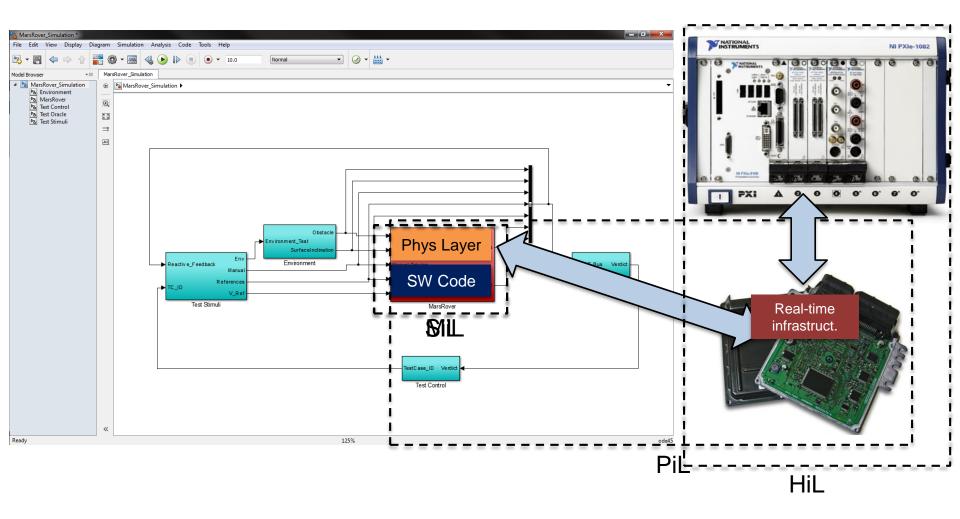
Surface

Testing configurable CPS vs configurable SW/SPLs

Configurable CPSs	Configurable SW/SPLs	
Cost of the prototype	No prototype needed	
Higher simulation time (Simulation of SW + Physical Layer)	Lower simulation time	
Many domains (often co-simulation needed)	Mainly software domain	
Faults: software, interaction, sensors, actuators, communication systems, etc.	Faults: software, interaction faults, etc.	
More test levels: Model-, Software-, Processor- and Hardware- in the Loop	Model-,Software- in the Loop	
High Variability: Many configurations to test Infeasible to test all possible configurations Unclear notion of test coverage		

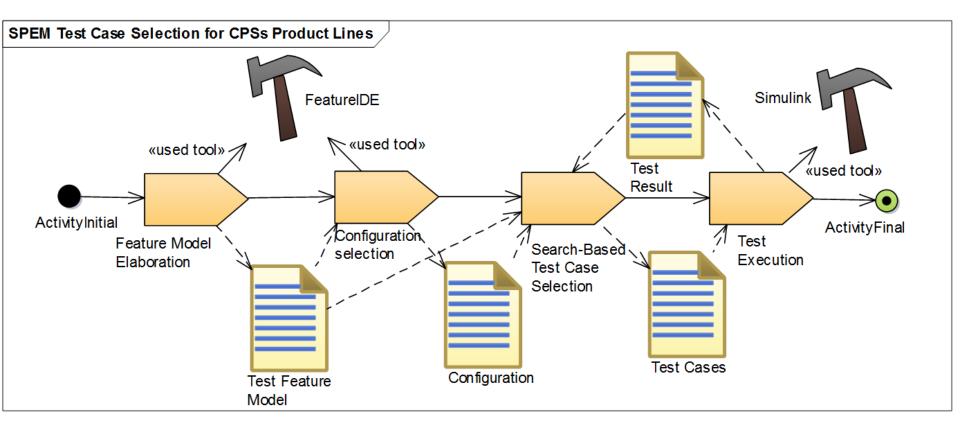
Our research focus

- Test Automation
 - Automatic generation of the test infrastructure
 - Automatic generation of test cases
- Test Optimization
 - Test case selection
 - Test case prioritization
- Variability Modeling
- Simulation
 - Heterogeneous model simulations with the FMI standard
 - Co-simulation engines

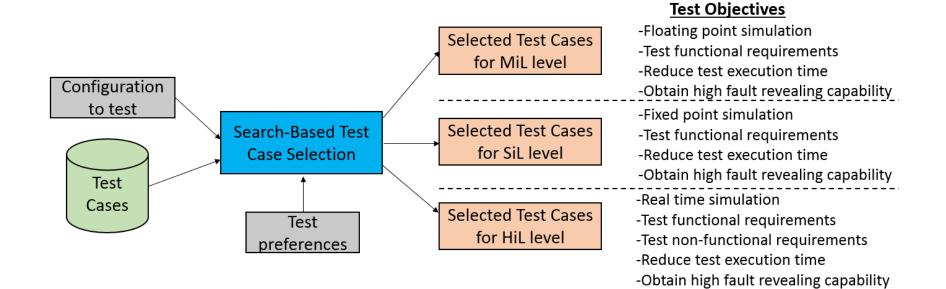


Testing challenges

- Multi-Level Test Case Selection
- Test Case Prioritization with Environmental
 Unpredictability
- Test Case Generation
- Environmental Testing of CPSs



Simulation-based testing CPSs



Overview of the Search-Based Test Case Selection Process

Overview of the Search-Based Test Case Selection Process

Corresponding test objectives for each test level

Cost Measures

- Test Execution Time: MiL, SiL, HiL
- Test Suite Similarity: SiL

Quality Measures

- Fault Detection Capability: MiL, SiL, HiL
- Functional Requirements Coverage: MiL, SiL, HiL
- Pairwise Functional Requirement Coverage: MiL, SiL, HiL
- Non-Functional Requirements Coverage: HiL
- Pairwise Non-Functional Requirements Coverage: HiL
- Weight-Based Search Algorithms were employed: GA, AVM, GRE and RS

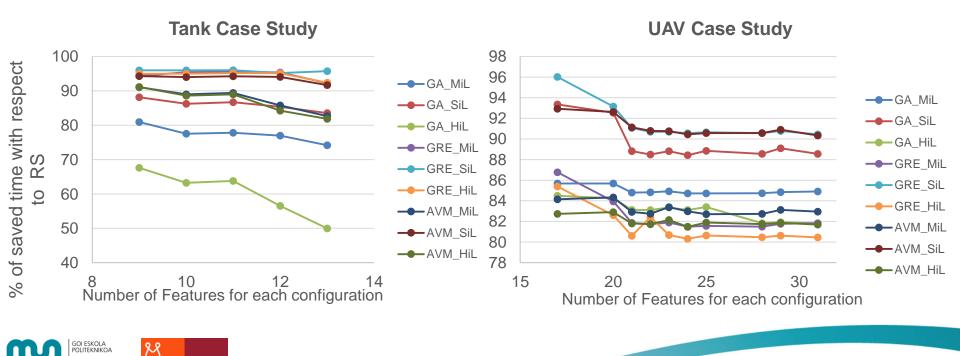
Research Questions

• RQ 1: Are the selected algorithms costeffective as compared to RS?

• RQ 2: Which algorithm shows best performance?

Experiment Design

- Two case studies:
 - Industrial tank (5 configurations)
 - Configurable Drone (10 configurations)
- Four Search Algorithms: GA, AVM, GRE, RS
- Five Test Suites: (80, 90, 100, 110 and 120 tests)
- 20 mutants (50 % physical layer, 50 % software)
- 100 algorithm runs
- In total:
 - 25 artificial problems for industrial tank
 - 50 artificial problems for configurable drone
- Evaluation Metrics:
 - Test Execution Time, Mutation Score, Achieved Test Coverage (4 types)


Results – Statistical Analysis

Test Execution Time

POLITÉCNICA

MONDRAGON

- Industrial Tank : GRE
- UAV: GA, GRE (at SiL level)

Results – Statistical Analysis

- % of Detected Faults
 - Industrial Tank: GA slightly better
 - UAV: similar
- Requirements Coverage
 - Industrial Tank : Similar
 - UAV: Similar
- Pairwise Requirement Coverage
 Industrial Tank : GA

Results – Statistical Analysis

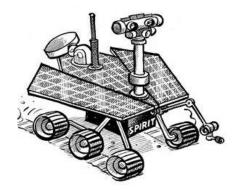
- Non-Functional Requirement Coverage

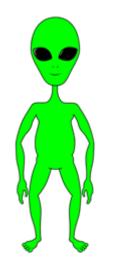
 Industrial Tank: GA
 - UAV: Similar
- Pairwise Non-Functional Requirement
 Coverage
 - Industrial Tank: GA

Concluding Remark

- All the algorithms show better performance than RS
- The GA gives most of the importance to test quality
- If pairwise coverage is taken into account
 - Test quality is important?
 - Yes: GA is recommended
 - No: Time is highly important?
 - YES: GRE is recommended
 - NO: GA is recommended
- If pairwise coverage is not taken into account: GA is recommended

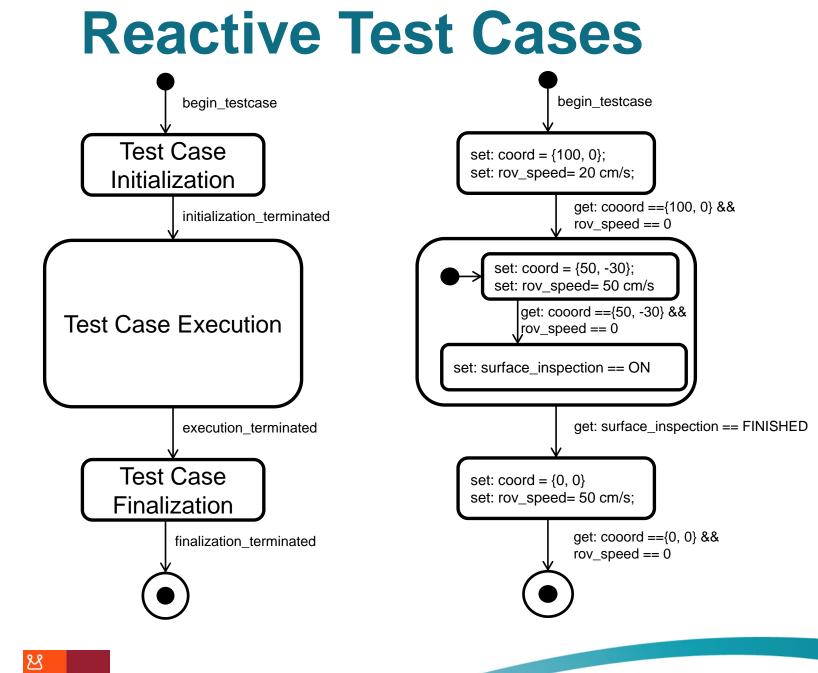
Detailed Information


A. Arrieta, S. Wang, G. Sagardui und L. Etxeberria, "Search-Based Test Case Selection of Cyber-Physical Systems Product Lines for Simulation-Based Validation," in SPLC 2016: Systems and Software Product Line Conference, 2016.



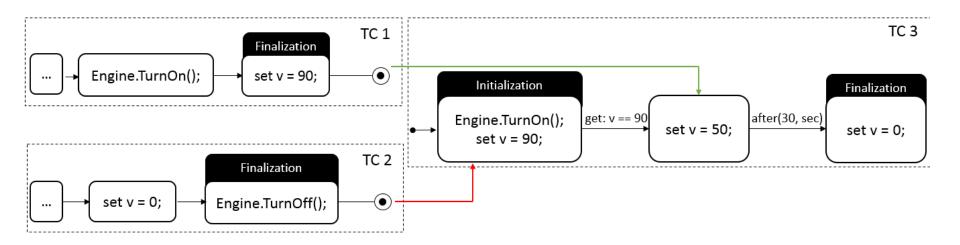
Testing challenges

- Multi-Level Test Case Selection
- Test Case Prioritization with Environmental
 Unpredictability
- Test Case Generation
- Environmental Testing of CPSs



OI ESKOLA OLITEKNIKOA

> HUMANITY AT WORK


MONDRAGON

ESCUELA POLITÉCNICA

SUPERIOR

UNIBERTSITATEA

Variable Test Execution Time

Objective Functions

- Test Case Execution Time
 - Test Initialization Time
 - Test Execution Time
 - Test Finalization Time
- Fault Detection Capability
 - Number of times the test detected faults with respect to number of times the test was executed
- Weight-Based Search Algorithms were employed: WBGA, RWGA, AVM, GRE and RS

Evaluation – Research Questions

- RQ 1: Are the selected search algorithms cost-effective as compared to Random Search?
- RQ 2: Which search algorithm achieves the best performance among the selected search algorithms?
- RQ 3: How does the increment of test cases impact the performance of the selected search algorithms?

Experiment Design

- Two Case Studies:
 - Cruise Control (Daimler AG)
 - Synthetic Case Study: Industrial Tank
- 5 Search Algorithms
 - WBGA
 - RWGA
 - AVM
 - Greedy
 - RS
- 20 Test Suites (25, 30, 35,..., 115, 120)
- 100 repetitions per test suite
- Evaluation: Fault Detection Time Mutation testing with 4, 10 and 20 mutants

Results – RQ 1 & RQ 2 for Cruise Control

RQ	Pair of Algorithms	A <b< th=""><th>A>B</th><th>A=B</th></b<>	A>B	A=B
1	Greedy vs RS	60/60	0/0	0/0
	RWGA vs RS	60/60	0/0	0/0
	WBGA vs RS	60/60	0/0	0/0
	AVM vs RS	60/60	0/0	0/0
2	Greedy vs RWGA	50/50	10/8	0/2
	Greedy vs WBGA	54/54	6/5	0/1
	Greedy vs AVM	51/51	9/9	0/0
	RWGA vs WBGA	41/38	18/11	1/11
	RWGA vs AVM	20/19	26/19	14/22
	WBGA vs AVM	17/14	40/31	3/15

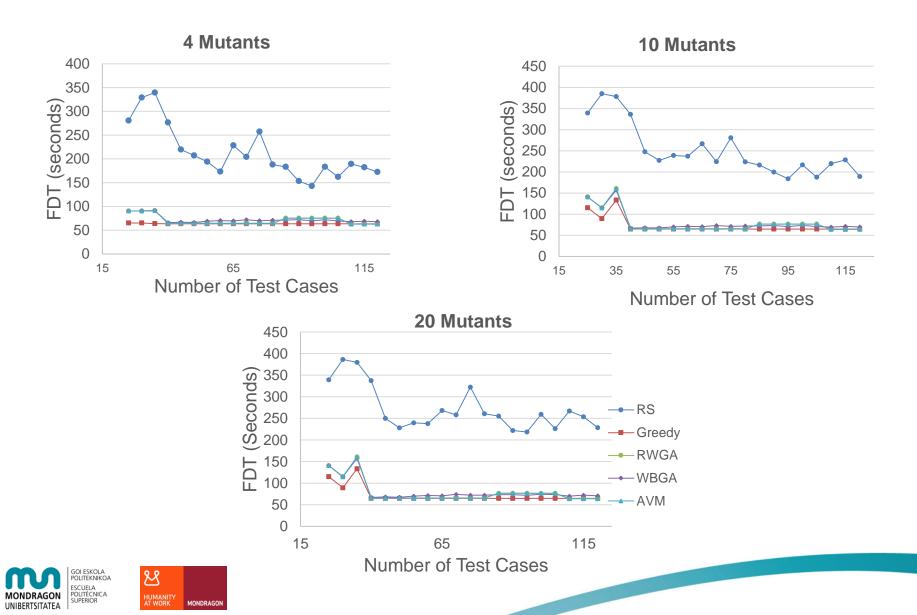
Results – RQ 1 & RQ 2 for Industrial Tank

RQ	Pair of Algorithms	A <b< th=""><th>A>B</th><th>A=B</th></b<>	A>B	A=B
1	Greedy vs RS	57/56	3/2	0/2
	RWGA vs RS	56/56	4/2	0/2
	WBGA vs RS	55/51	5/2	0/7
	AVM vs RS	56/56	4/2	0/2
2	Greedy vs RWGA	19/10	39/18	2/32
	Greedy vs WBGA	29/19	27/27	4/11
	Greedy vs AVM	8/8	39/39	13/13
	RWGA vs WBGA	43/27	16/0	1/33
	RWGA vs AVM	6/0	52/41	2/19
	WBGA vs AVM	6/0	53/43	1/17

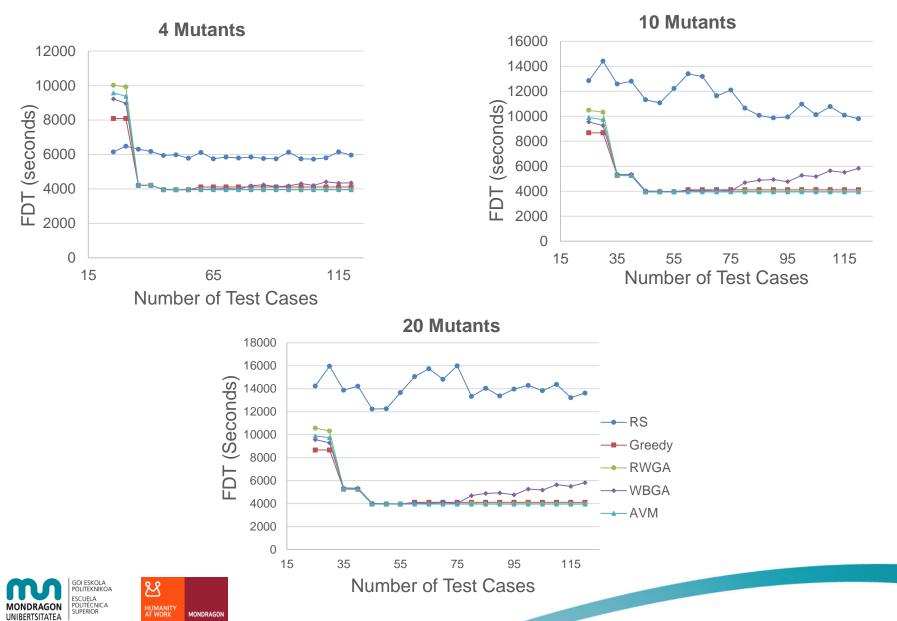
Results – RQ 3

• Cruise Control:

Algorithm	4 mutants	10 mutants	20 mutants
RS	$\rho = -0,212$	$\rho = -0.235$	$\rho = -0.156$
Greedy	$\rho = -0,\!621$	$\rho = -0.614$	$\rho = -0.614$
RWGA	$\rho = -0,912$	$\rho = -0.923$	$\rho = -0.924$
WBGA	$\rho = -0.457$	$\rho = -0.453$	$\rho = -0.434$
AVM	$\rho = -0.457$	$\rho = -0.438$	$\rho = -0.438$


Industrial Tank

Algorithm	4 mutants	10 mutants	20 mutants
RS	$\rho = -0.045$	$\rho = -0.194$	$\rho = -0.058$
Greedy	$\rho = -0,297$	$\rho = -0,297$	$\rho = -0,297$
RWGA	$\rho = -0.277$	$\rho = -0,393$	$\rho = -0,393$
WBGA	$\rho = -0.115$	$\rho = -0,204$	$\rho = -0,205$
AVM	$\rho = -0,698$	$\rho = -0,697$	$\rho = -0,697$



Results – Cruise Control

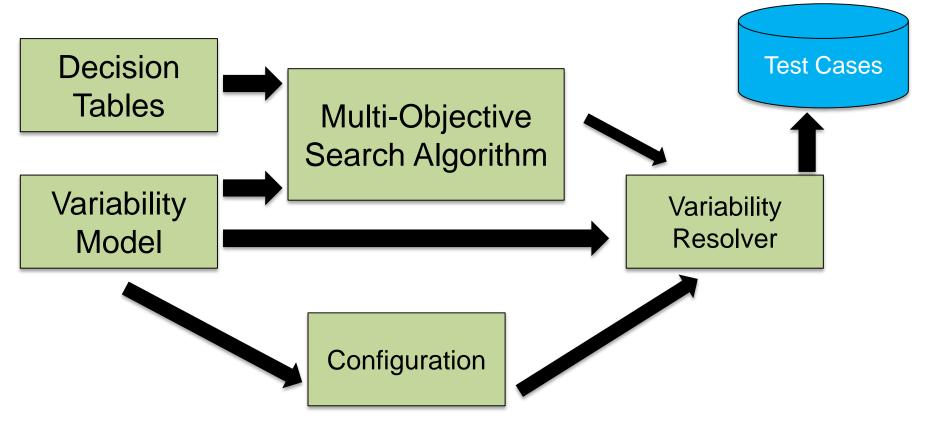
Results – Industrial Tank

Concluding Remarks

- Local search algorithms are better
- < 40 test cases: Greedy is recommended
- Test Case Execution Time < 100 seconds and < 110 test cases: Greedy is recommended
- > 40 test cases and Test Case Execution time > 100 seconds: AVM is recommended
- > 110 test cases: AVM is recommended

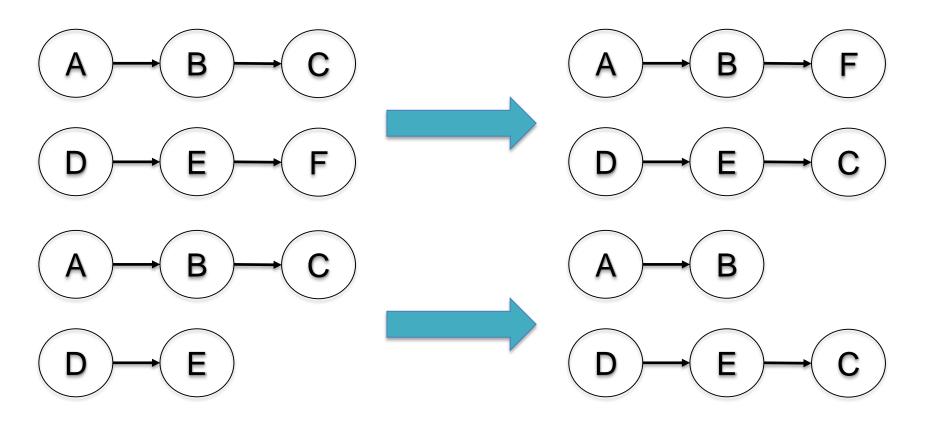
Detailed Information

A. Arrieta, S. Wang, G. Sagardui und L. Etxeberria, "Test Case Prioritization of Configurable Cyber-Physical Systems with Weight-Based Search Algorithms," in GECCO 2016: Genetic and Evolutionary Computation Conference, 2016.

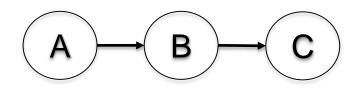


Testing challenges

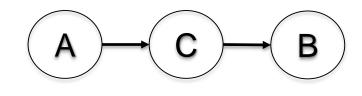
- Multi-Level Test Case Selection
- Test Case Prioritization with Environmental
 Unpredictability
- Test Case Generation
- Environmental Testing of CPSs



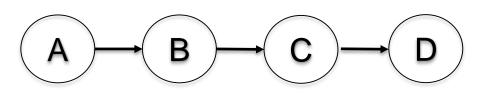
Automatic Generation of Reactive Test Cases



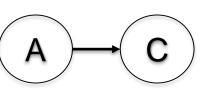
Crossover Operator



Mutation Operator



Replace



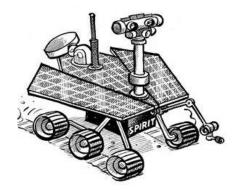
B'

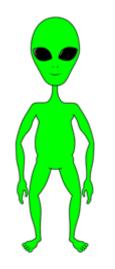
Addition

Remove

А

Change of variable


MONDRAGON



Testing challenges

- Multi-Level Test Case Selection
- Test Case Prioritization with Environmental
 Unpredictability
- Test Case Generation
- Environmental Testing of CPSs

Conclusion

- Search algorithms optimize test processes in the context of CPSs
- Still many challenges and a lot of work to do
- Many industries interested:
 - Automotive
 - Railway
 - Maritime

Thank you for your attention!

Aitor Arrieta aarrieta@mondragon.edu