
Gordon Fraser, University of Sheffield, UK
Andrea Arcuri, Simula Research Labs, Norway

Gordon Fraser, University of Sheffield

Search-Based Software
Engineers Need Tools

Contents

1. What is Search Based Software Testing?

2. Building an SBST Tool is Easy!

3. The EvoSuite Test Generation Tool

4. Lessons Learned Building an SBST Tool

Source code Tests

Automated test generation

Random Test Data
Generation

Input

Generating vs Checking
Conventional Software Testing Research

Write a method to construct test cases

Search-Based Testing

Write a method  
to determine how good a test case is

Generating vs Checking
Conventional Software Testing Research

Write a method to construct test cases

Search-Based Testing

Write a fitness function 
to determine how good a test case is

Fitness-guided search

Input

Fi
tn

es
s

Fitness-guided search

Input

Fi
tn

es
s

Search Operators

Components of an SBST Tool

Search Algorithm

Representation

Test ExecutionInstrumentationFitness Function

def testMe(x, y):
 if x == 2 * (y + 1):
 return True
 else:
 return False

Components of an SBST Tool

Meta-heuristic algorithm

Measure how good a candidate solution is

Execute tests

Search Algorithm

Representation

Search Operators

Test Execution

Instrumentation

Fitness Function

Encoding of the problem solution

Modifications of encoded solutions

Collect data/traces for fitness calculation during execution

Contents

1. What is Search Based Software Testing?

2. Building an SBST Tool is Easy!

3. The EvoSuite Test Generation Tool

4. Lessons Learned Building an SBST Tool

def testMe(x, y):
 if x == 2 * (y + 1):
 return True
 else:
 return False

Components of an SBST Tool

Hill-climbingSearch Algorithm

Representation

Search Operators

Test Execution

Instrumentation

Fitness Function

(x, y) (x+1, y)(x-1, y)

(x-1, y+1) (x, y+1) (x+1, y+1)

(x-1, y-1) (x, y-1) (x+1, y-1)

def testMe(x, y):
 if x == 2 * (y + 1):
 return True
 else:
 return False

Components of an SBST Tool

Hill-climbingSearch Algorithm

Representation

Search Operators

Test Execution

Instrumentation

Fitness Function

Tuple (x, y)

Neighbourhood of (x, y)

Hill Climbing

1. Select Random
Value

Hill Climbing

2. Explore
Neighbourhood

Hill Climbing

3. Choose better
neighbour

Hill Climbing

4. Repeat until
optimum is found

Components of an SBST Tool

Hill-climbingSearch Algorithm

Representation

Search Operators

Test Execution

Instrumentation

Fitness Function

Tuple (x, y)

Neighbourhood of (x, y)

SUTInput Output

SUTInstrumented
SUT

Input

Output

Trace
} FitnessTest Data

def testMe(x, y):
 if x == 2 * (y + 1):
 return True
 else:
 return False

Components of an SBST Tool

Branch distance

Call method

Search Algorithm

Representation

Search Operators

Test Execution

Instrumentation

Fitness Function

Global variable

Hill-climbing

Tuple (x, y)

Neighbourhood of (x, y)

100 1 2 3 4 5 6 7 8 9

9

0

1

2

3

4

5

6

7

8

Input Value

Fit
ne

ss

9

0

1

2

3

4

5

6

7

8

Input Value

Fit
ne

ss

-(231) 231-10

def testMe(x, y):
 if x == 2 * y and y > 1:
 return True
 else:
 return False

Branch Distance
Distance True Distance False

|x - y| 1

1 |x - y|

y - x + 1 x - y

y - x x - y + 1

x - y+ 1 x - y

x - y x - y + 1

Expression

x == y

x != y

x > y

x >= y

x < y

x <= y

def testMe(x, y):
 if x == 2 * y and y > 1:
 return True
 else:
 return False

def testMe(x, y):
 if x <= y:
 if x == y:
 print("Some output")
 if x > 0:
 if y == 17:
 # Target Branch
 return True
 return False

Entry

Exit

x <= y

x == y

x > 0

y == 17

return False return True

print

true

true

true

true

false

false

false

false

def testMe(x, y):
 if x <= y:
 if x == y:
 print("Some output")
 if x > 0:
 if y == 17:
 # Target Branch
 return True
 return False

Entry

Exit

x <= y

x == y

x > 0

y == 17

return False return True

print

true

true

true

true

false

false

false

false

Entry

Exitx <= y

x == y x > 0

y == 17

return False

return True

print

true
truefalse

true true

true

Covering a structure

TARGET

Fitness evaluation

TARGET

The test data
executes the
‘wrong’ path

Approach Level

TARGET

= 2

= 1

= 0

minimisation

Putting it all together

true

true

if a >= b

if b >= c

TARGET

TARGET MISSED  
Approach Level = 1 

Branch Distance = c - b

TARGET MISSED  
Approach Level = 2 

Branch Distance = b - a

false

false

true if c >= d false

TARGET MISSED  
Approach Level = 0 

Branch Distance = d - c

Fitness = approach Level + normalised branch distance

TARGET

normalised branch distance between 0 and 1 
indicates how close approach level is to being penetrated

9

0

1

2

3

4

5

6

7

8

Input Value

Fit
ne

ss

-(231) 231-10

9

0

1

2

3

4

5

6

7

8

Input Value

Fit
ne

ss

-(231) 231-10

9

0

1

2

3

4

5

6

7

8

Input Value

Fit
ne

ss

-(231) 231-10

Evolutionary Testing

Mutation

Crossover

Selection

Insertion

Fitness Evaluation

End?

Test cases

Monitoring

Execution

Crossover

a b c
10 10 20 40

d

a b c
20 -5 80 80

d

c
80 80

d

a
20

b
-5

a
10

b
10

c
20 40

d

d
40

Mutation

a b c
10 10 20 20

d
40

da
20

• Selective pressure:  
The higher, the more likely the fittest are chosen

• Stagnation:  
Selective pressure too small

• Premature convergence: 
Selective pressure too high

• Standard algorithms:  
Rank selection, tournament selection, roulette wheel
selection

Selection

Contents

1. What is Search Based Software Testing?

2. Building an SBST Tool is Easy!

3. The EvoSuite Test Generation Tool

4. Lessons Learned Building an SBST Tool

@Test

public void test()
{

}

int x = 2;
int y = 2;
int result = x + y;
assertEquals(4, result);

@Test

public void test()
{

}

DateTime var3 = var1.toDateTime(var2);

DateTime var4 = var3.minus(var0);

TimeOfDay var2 = new TimeOfDay();

YearMonthDay var1 = new YearMonthDay(var0);

int var0 = 10

DateTime var5 = var4.plusSeconds(var0);

Test Suite Generation
Initialize

Population

Select parents

Recombine
parents

Return best
solution

While not
done

DateTime var3 = var1.toDateTime(var2);

DateTime var4 = var3.minus(var0);

TimeOfDay var2 = new TimeOfDay();

YearMonthDay var1 = new YearMonthDay(var0);

int var0 = 10

DateTime var5 = var4.plusSeconds(var0);

Test Suite Generation

Crossover

Mutation

Mutation

Fitness

public int gcd(int x, int y) {
 int tmp;
 while (y != 0) {
 tmp = x % y;
 x = y;
 y = tmp;
 }
 return x;
}

Components of an SBST Tool

Sum of branch distances (and others)

Java reflection

Search Algorithm

Representation

Search Operators

Test Execution

Instrumentation

Fitness Function

Java bytecode instrumentation

Genetic Algorithm (+Archive, Seeding, Local Search, DSE)

Sets of sequences of Java statements

Standard GA operators implemented for test suites

EvoSuite

http://www.evosuite.org/downloads

• Jar release - for command line usage

• Maven plugin

• IntelliJ plugin

• Eclipse plugin

• Jenkins plugin

Does it work?

Bu
gs

 fo
un

d

0%

25%

50%

75%

100%

JFreeChart Closure Math Lang Joda Time
0

0.1

0.2

0.3

0.4

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Defects4J: 357 real bugsSF110: 23,886 Classes 
6,628,619 LOC

G. Fraser, A. Arcuri. “A Large Scale Evaluation of Automated
Unit Test Generation with EvoSuite” TOSEM 24(2), 2014.

Shamshiri et al. "Do Automatically Generated Unit Tests Find Real
Faults? An Empirical Study of Effectiveness and Challenges” ASE, 2015

Point is: It takes a tool and lots of
engineering to do this.

Coverage

0

25

50

75

100

Option Rational DocType ArrayIntList

EvoSuite Manual

Time Spent on Testing

0

6.5

13

19.5

26

FilterIterator FixedOrderComparator ListPopulation PredicatedMap

Assisted Manual

Fault Detection

0

0.5

1

1.5

2

Option Rational DocType ArrayIntList

EvoSuite Manual

Faults Prevention

0

4

8

12

16

FilterIterator FixedOrderComparator ListPopulation PredicatedMap

Assisted Manual

Method Names

 @Test(timeout = 4000)
 public void testFooReturningFalse() throws Throwable {
 StringExample stringExample0 = new StringExample();
 boolean boolean0 = stringExample0.foo("");
 assertFalse(boolean0);
 }

 @Test(timeout = 4000)
 public void test3() throws Throwable {
 StringExample stringExample0 = new StringExample();
 boolean boolean0 = stringExample0.foo("");
 assertFalse(boolean0);
 }

Variable Names
 @Test(timeout = 4000)
 public void testFooReturningFalse() throws Throwable {
 StringExample stringExample0 = new StringExample();
 boolean boolean0 = stringExample0.foo("");
 assertFalse(boolean0);
 }

 @Test(timeout = 4000)
 public void testFooReturningFalse() throws Throwable {
 StringExample invokesFoo = new StringExample();
 boolean resultFromFoo = invokesFoo.foo("");
 assertFalse(resultFromFoo);
 }

Variable Names
public class Foo {
 public void foo() {
 StringExample sx = new StringExample();
 boolean bar = sx.foo("");
 }
}

 @Test(timeout = 4000)
 public void testFooReturningFalse() throws Throwable {
 StringExample sx = new StringExample();
 boolean bar = sx.foo("");
 assertFalse(bar);
 }

Readability Model

Time Spent Understanding
T

im
e

(m
in

)

0

1.75

3.5

5.25

7

Std
XMLR

ea
de

r

Attr
ibu

te

Cha
inB

ase

O
pt

ion

Fix
ed

O
rd

er
Com

pa
ra

to
r

Fil
ter

Lis
tIt

er
ato

r

Plu
gin

Rule
s

Rule
sB

ase

Cha
rR

an
ge

Ye
ar

Mon
th

Day

Default Optimised

Contents

1. What is Search Based Software Testing?

2. Building an SBST Tool is Easy!

3. The EvoSuite Test Generation Tool

4. Lessons Learned Building an SBST Tool

1. Java

…is a weird language
and never ceases to surprise me

My personal enemy: Java Generics

Bytecode over sourcecode - yes!

2. Corner Cases

The more corner cases you cover

...the more can go wrong

...the more new corner cases you
will find

...the slower EvoSuite becomes

2. Corner Cases

• Constant Seeding: +5%

• Virtual FS: +1.4%

• Mocking +4.7%

• JEE support: +3%

• DSE: +1.2%

3. Developers

…some really care only about coverage

…others don’t care about coverage: 
"I wouldn’t normally in real life be aiming for 100% coverage. I’d probably end up with
fewer tests without this tool but I couldn’t tell you if they would be all the right tests.”

…do not want their tests to be generated

…hate ugly tests

…don’t like waiting

Talk to them!

3. Developers

public class Example {

 private Example() {}

 // …
}

4. Testing

Testing randomised algorithms is difficult

Make the implementation deterministic

Always use LinkedHashSet over HashSet,
LinkedHashMap over HashMap

Java reflection is not deterministic

Avoid static state (e.g. singletons)

4. Testing

EvoSuite uses one central random number
generator

Any change will affect something at a
completely different part of the program

Change seeds frequently during testing to find
flaky tests

5. Documentation

I don’t comment my code

Students struggle

I spend more time explaining things than it
would take me to implement them

6. Tool Comparisons

Reviewers want to see them

I don’t like doing them

It’s impossible to make them fair

Contact tool authors

Report bugs

Make your own tools usable

7. Open Source

“The source code will be released under an open
source library (most likely GPL2) at a later point,
as soon as a number of refactorings are
completed.” — FSE’11 tool paper appendix

Public GitHub repo: 2015

It will never be clean enough, just release it!

8. Licensing

License matters

Google will not touch GPL

BSD, MIT - do you want others to become
rich with your idea?

Gnu Lesser Public License, Apache

9. Tool Papers

The first one will be cited

The rest no one will cite

It shouldn’t be this way

10. Tool Building

Building a quick prototype is easy

Building a real tool is difficult

…and will give you a paper

…but lets you identify many new problems

…lets you talk to developers

…lets other people build on your work

…will give you lots of citations and papers

10. Tool Building

Building a quick prototype is easy

Building a real tool is difficult

…and will give you a paper

…but lets you identify many new problems

…lets you talk to developers

…lets other people build on your work

…will give you lots of citations and papers

Search-Based
Software Engineers

Need Tools!

Gordon Fraser, University of Sheffield, UK
Andrea Arcuri, Simula Research Labs, Norway

www.evosuite.org

http://www.evosuite.org

