Universidad
Y/ UCA | e

Optimization of LLVM-Based Code
using Multi-Objective Evolutionary
Algorithms

Bernabé Dorronsoro Sebastien Varrette
University of Cadiz University of Luxembourg

Outline

Context and motivation

The code optimization problem
Introduction to multi-objective optimization
The Evo-LLVM compiler framework

Preliminary results
Conclusion and perspectives

Outline

Context and motivation
The code optimization problem
Introduction to multi-objective optimization

The Evo-LLVM compiler framework
Preliminary results
Conclusion and perspectives

1st Summer School on SBSE

Energy in Today’s Computing Systems

* Energy consumption
— Key issue in modern computer systems
— Increasing computing / storage needs
 Virtualization, simulation, Big Data analytics, ...
* Energy efficiency challenge

— 2020 Exa-scale challenge: 1 EFLOPS in 20 MW
* Today’s most efficient supercomputer: 314 MW

— Foreseen combined solution
* Involving HW / Middleware / Software improvements

Energy in Today’s Computing Systems

* Achieving energy efficiency in HPC
— Reduce operating costs
— Reduce impact on environment

— Become more competitive

Energy in Today’s Computing Systems

* Not only HPC and large servers are affected

— Personal computers
— Battery powered devices XY | E—

— Any other electronic devices
* Internet of things

I B

* Advantages Dl

— Longer operation times

— Adding sensors and computing capacity to things
* Making intelligent things

1st Summer School on SBSE

Energy Management

 Recent HW supports energy management at
various levels

— Dynamic scaling of the power (or freq) of CPU/
Memory

— Integrated way to handle idle state

— Embedded sensor to measure energy and
performance metrics

 Power drainage of a system is closely related
to workload

1st Summer School on SBSE

Energy Management

* Reserach question

1st Summer School on SBSE

Energy Management

* |n this talk: EvoLLVM

— Goal: Evolve a given source code to produce
energy-aware versions
— Tools
* LLVM Compiler Infrastructure
* Multi-objective optimization algorithms
— Features

* Combining energy and performance metrics for
evaluation of programs

» Software is optimized for a specific architecture

1st Summer School on SBSE

Outline

Context and motivation
The code optimization problem
Introduction to multi-objective optimization

The Evo-LLVM compiler framework
Preliminary results
Conclusion and perspectives

1st Summer School on SBSE

10

Code optimization

* Implemented using sequence of optimizing
transforms
— Produce a semantically equivalent output program
— Transforms order matters
— NP-complete problem*

 Thus modern compilers (GCC, LLVM) rely on
static heuristics

— Involves subset of transformations producing good
results in general

* A. Nisbet. GAPS: A Compiler Framework for Genetic Algorithm (GA) Optimised Parallelisation. In HPCN Europe, pages

987-989, 1998
1st Summer School on SBSE

11

Code Transformation Examples

* Loop unrolling of rate K

Normal loop After loop unrolling
int x;
for (x = 0; x < 100; x += 5)
int x; {
for (x = 0; x < 100; x++) delete(Xx);
{ delete(x + 1);
delete(x); delete(x + 2);
} delete(x + 3);

delete(x + 4);

Code Transformation Examples

* Localize declaration

#include <stdio.h>

int main(){
int i,j;
int a [15][15];

for(i=0;i<15;i++){
for (j=05j< 15;j++){
ali][j] = i+j;
}
¥

for(i=0;i<15;i++){
for(j=0;j<15;j++){
ali][j] = i+j;
}
}

return 0;

(a) original program

int main(){

int i;
int a [15][15];

for(i =0;i <=14;i+=1){
//PIPS generated variable
int j;
for(j =0;j <=14;j+=1)
: a[i][j] = i+j;

for(i =0;i <=14;i4=1) {
//PIPS generated variable
int j;
for(j =0;j <=14;j+=1)
) ali][j] = i+j;

return 0;

(b) transformed program

Code Transformation Examples

* Code flattening

#include <stdio.h>

#include <stdio.h> int main() {

. . int i;
i Tnan%(){ int a [4];
}nt b //PIPS generated variable
int a [4]; int k, k 0;
P k = 0+5;
for(i=0;i<4;i++){ a[0) _+5"
int k = i+5; S
a[i] = b; a[l] :5’.
) k = 245;
. al2| = b5;
if (al0] == 7){ o =
int k = a[l]; al3) = 5"
} : __
return 0; i (i[(())]_—_a [)1]
} return 0;
(a) original program }

(b) transformed program

Code Transformation Examples

* Parallel loop generator

int foo(int a [15][15], b [15][15]){

int i,j; . . .
int c [30]; 1ntifl(::0§1n§.a [15][15], int b [15][15]){
int c [30];

for (i=1;i<14;i++){
for (j=1;j<14;j++){
cli+j]=ali—1][j]+bli][j]*ali][j+

for(i =1;i <=13;i+=1)
#pragma omp parallel for
for(j =1;j <=13;j+=1)

o cli+i] = ali=1][i]+b[i][i]+ali][i+1];
return 0;
return O; }
} (b) transformed program

(a) original program

About LLVM

Collection of modular/reusable compiler and
toolchain technologies

Multiple LLVM front-ends. Ex: Clang

Supports just-in-time optimization and
compilation

LLVM core

— Intermediate representation (IR) of the program
— 54 built-in transformations (called passes)

1st Summer School on SBSE 16

LLVM IR

int mul_add(int x, int y, int z) {
return x * y + z;

}

4

define 132 @mul_add(i32 %x, i32 %y, 132 %z) {
entry:

htmp = mul i32 %x, %y

%»tmp2 = add i32 tmp, %=z

ret i32 Jtmp2
}

1st Summer School on SBSE

17

Outline

Context and motivation
The code optimization problem
Introduction to multi-objective optimization

The Evo-LLVM compiler framework
Preliminary results
Conclusion and perspectives

1st Summer School on SBSE

18

What is multi-objective optimization?

Many real-world optimization problems require to optimize more
than one objective at the same time

— These objectives are usually in conflict among them
— Improving one means worsening the others

Multi-objective (or multi-criteria) optimization
— Discipline focused on solving multiobjective optimization problems

(MOPs)
Time] Non-dominated
Example: car trip between two cities Dominated

— Objectives 8 (7h, 33))

« Minimizing time 7

* Minimizing fuel consumption 6
— Decision variables:

e Speed, instant consumption, ... 3

25 30 35 40 Fuel

What is multi-objective optimization?

®* Insingle-objective ®* In multi-objective
optimization (SO) optimization (MO)
- The optimal result is - The optimal result
one single solution (Pareto optimal set) is a
set of (non-dominated)
solutions

X F(X) X F(X), G(X), ...
(Solution space) (Objective space) (Solution space) Objective space

1st Summer School on SBSE 20

The dominance concept

* Insingle-objective * |n multi-objective
optimization (SO) optimization (MO)
— We look for a single — We are not restricted to
solution find a unique optimal
— The concept of “A better solution
than B” is trivial — The concept of “A better
than B” is not trivial
A 2 |3 (4 |5 A 3 |7 |4 |8 A 119 (4 |5
B 4 |6 |5 |7 B 2 |1 (2 |5 B 3 |6 |5 |7
A is better than B B is better than A N‘o/ne is better

A-andB are NON-DOMINATED

MO Optimization and Decision Making

* Finding the Pareto front < In practice, an expertin

of a problem is not the the domain (the
last step in multi- decision maker) has to
objective optimization choose the best trade-

off solution

MO Optimization and Decision Making

* In the example of the

car trip

— If time is important
* Choose (5h, 40I)

— If consumption is
important:
* Choose (8h, 20I)

— Compromise solution:

* (6h, 30I)

Time!

(8h, 25I)
@

(6h, 301)
(5.5h, 35I)
® 5h, 40l
.'(,)

1st Summer School on SBSE

25 30 35 40

Fuel

23

The Pareto Front

The goal is to find the Pareto front

Exact techniques are not useful in most cases
— NP-hard complexity, non-linearity, epistasis, ...
Rely on approximation techniques

Two key features to measure the quality of
solutions

* Convergence
* Diversity

The Pareto Front

front returned
f, by the optimizer
~
.
S, true Parete ont
N - ‘ :
Bad diversity Bad convergence Ideal case

1st Summer School on SBSE 25

Pareto Front Example (1)

* Bi-objective problem

Min F
()
)

Subject to:

£,(%)
g,(X)
0
0

AV VAN

(f1(3), f>(X))
4x7 + 4x,

(x, =5+ (x,—-5)*

(x,—5)* +x;-25

—(x, =8 —(x,+3)*+7.7

Binh2 |

IA

IA A A
W o O

0 L L L L L L N
0 20 40 60 80 100 120 140 160 180 200

1st Summer School on SBSE

26

Pareto Front Example (lIl)

* Tri-objective problem

(1+ g(wn))cos(x

JQeoTgr
(1 4+ g(enm)(.U\(Lf%)qin To =

T

Ty 7)

(1 + g(xar))sin(

0<z; <1, 1=1,2,

inyy (@0 — 0.5)°

12
L3,192

100

~N e .a w
-~ -~
T
(3 5)
0.&
. 0.
e
- 0.4
0.2
C
0
02

1st Summer School on SBSE

27

NSGAII Algorithm for MO Problems

* Non-dominated Sorting Genetic Algorithm
* Proposed by K. Deb (2002)

* The most popular metaheuristic for multi-
objective optimization

* Features

— Ranking using non-dominated sorting
— Crowding distance as density estimator

NSGAII - Ranking

@ O O Rank1
O . O . Rank 2
O .. O () Rank3
© e
©
f3

1st Summer School on SBSE 29

NSGAII - Crowding

f, Area representing the crowding distance of point A

/

Area representing the crowding distance of point B

/

f3

Point B is in a less crowded region than point A

NSGAII Algorithm for MO Problems

Population
———
” ———
© O |
3 ——
'S ——
'1;: o |
- —
4 C————
—
—
——
0 ——
§ — Rank 4 A
2 — |- “\x
= —— $“\ N\
z C———| - Rank5 O "\0
C— A

o>
Auxiliar Population o@‘@ (5&

1st Summer School on SBSE 31

Outline

Context and motivation
The code optimization problem
Introduction to multi-objective optimization

The Evo-LLVM compiler framework
Preliminary results
Conclusion and perspectives

1st Summer School on SBSE

32

Evo-LLVM overview

Exploit the flexibility offered by LLVM to
manipulate the IR

Take profit from applying a sequence of
supported transforms

Evaluate impact on (at least) two objectives:
— Energy effciency of the produced executable

— Run time

Multi Objective Evolutionary Algorithms (MOEAS)
— Build approximated Pareto-optimal solutions
— In this work: NSGA-II

Evo-LLVM

Evo-LLVM

Evolutionary
myfile.c Algorithm myfile_optl.c
e o s A
void funcf(a,b) Y=\ > _— €) - >
¥ i, a P r ~ ot R S ”
printf(*%d", a); - Ve U
printf("%d", b); " ad *
! Conversion
LLVM parser Intermediate Represenation (IR) to files
Initialisation of the population
(copy of initial individual)
\ 4 myfile_opt2.c
Mutation Reprlo—
(Transfor- duction) N
mations) Crossover Selection
0 ¢ U>
- 'S
‘i’\/ L g
myfile_opt3.c
Population Population Population Population
T
Tt * Ly
(=)
S
Evaluation

1st Summer School on SBSE

34

Representation of solutions

* Given a source program P

* Individuals (I)

— Composed by
* LLVM byte code of P

» Sequence of applied transforms
— Variable length

— Features

* Semantically equivalent to P
e Easily built from P

Parameters of NSGAII

Population size: 50 individuals

Initial population: Individuals are P with one
random transformation

Mutations: on each element of the sequence
with prob. P, = 0.1

— Change the transformation by another randomly
chosen one

— Or append a new transformation
Cross-over: Single-point cross-over
— Limits the break of “good” sequences

Maximum number of generations: 100

Benchmark

* Quicksort algorithm
— Loops
— Memory allocations
— Recursion
— Branching

e Test cases: strings of 100 and 1000 numbers
— Random
— Random, but with some duplicates
— Random, but sorted: small-to-big
— Random, but sorted: big-to-small

Fitness

 Two objectives

— Execution time

* Average runtime for each test-case
— 100 runs
— Sequentially executed

— Power consumption

* Average power consumption for each test-case
* Power consumption based on estimations

Estimation of Power Consumption

* Evaluated per evaluation process (i.e., per pid)
— Based on ratio of the total power for 100 consecutive runs

— Focus on relative Avg. CPU & memory usage per pid
» /proc/<pid>/stat & /proc/<pid>/statm & /proc/meminfo
Power(pid) = [0.58 X a_, (pid) + 0.28 X a,....,..(pid)] P, ;.

cpu

80 -

OII-

RAM Disk uCPU Memory M Disk

Power (W)
5O
© O

N
o
1

N. Kothari et al., Virtual Machine Power Metering and Provisioning, ACM Symposium on Cloud Computing, 2010
1st Summer School on SBSE 39

power cosnunption

35

30

25

20

15

16

65000

Generation 2
Generation 20
g WEN s - Generatgon 430
¥4:§ ération 40
Generation 50
Generation 45

pe g EQ&W #+ e 3 +w:ﬁ# pareto front

ey

N
s

K

<]

708000 75600 806060 85000 96600

execution tine
1st Summer School on SBSE

95600

40

Estimation of Power Consumption

* Option 1: Intelligent Platform Management
Interface (IPMI)

— Defines a set of interfaces for out-of-band
management of computer systems

e Connection to HW and not OS
— Provides power measurement of the card

Calxeda EnergyCard module
(4 ARM Cortex A9
processors)

socz SOC1

e Option 2: Build high precision power metering
d eVI Ce 1st Summer School on SBSE 41

Conclusions

Evo-LLVM evolves a given source code to
produce energy aware versions

— Use MO to look for appropriate transformation
segquences

— Energy and performance metrics for fitness evaluation
— Optimization is bound to a given computing system

Preliminary experiments show promising results

— Still, long way ahead
* Need better energy monitoring
* Improve experimental settings
* Only applied to a pedagogical example (quicksort)

1st Summer School on SBSE 4?2

Thanks!

Bernabé Dorronsoro
University of Cadiz

bernabe.dorronsoro@uca.es
http://bernabe.dorronsoro.es

