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Energy	in	Today’s	Compu3ng	Systems	

•  Energy	consump3on	
– Key	issue	in	modern	computer	systems	
–  Increasing	compu3ng	/	storage	needs	

•  Virtualiza3on,	simula3on,	Big	Data	analy3cs,	…	

•  Energy	efficiency	challenge	
– 2020	Exa-scale	challenge:	1	EFLOPS	in	20	MW	

•  Today’s	most	efficient	supercomputer:	314	MW	
– Foreseen	combined	solu3on	

•  Involving	HW	/	Middleware	/	SoZware	improvements	
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Energy	in	Today’s	Compu3ng	Systems	

•  Achieving	energy	efficiency	in	HPC	
– Reduce	opera3ng	costs	
– Reduce	impact	on	environment	
– Become	more	compe33ve	
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Energy	in	Today’s	Compu3ng	Systems	

•  Not	only	HPC	and	large	servers	are	affected	
– Personal	computers	
– Ba5ery	powered	devices	
– Any	other	electronic	devices	

•  Internet	of	things	
•  Advantages	

– Longer	opera3on	3mes	
– Adding	sensors	and	compu3ng	capacity	to	things	

•  Making	intelligent	things	
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Energy	Management	

•  Recent	HW	supports	energy	management	at	
various	levels	
– Dynamic	scaling	of	the	power	(or	freq)	of	CPU/
Memory	

–  Integrated	way	to	handle	idle	state	
– Embedded	sensor	to	measure	energy	and	
performance	metrics	

•  Power	drainage	of	a	system	is	closely	related	
to	workload	
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Energy	Management	

•  Reserach	ques3on	

Can	we	produce	energy	aware	workload	through	
source	code	evolu#on?	
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Energy	Management	

•  In	this	talk:	EvoLLVM	
– Goal:	Evolve	a	given	source	code	to	produce	
energy-aware	versions	

– Tools	
•  LLVM	Compiler	Infrastructure	
•  Mul3-objec3ve	op3miza3on	algorithms	

– Features	
•  Combining	energy	and	performance	metrics	for	
evalua3on	of	programs	

•  SoZware	is	op3mized	for	a	specific	architecture	
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Code	op3miza3on	

•  Implemented	using	sequence	of	op3mizing	
transforms		
–  Produce	a	seman&cally	equivalent	output	program	
–  Transforms	order	ma5ers	
– NP-complete	problem*	

•  Thus	modern	compilers	(GCC,	LLVM)	rely	on	
sta3c	heuris3cs		
–  Involves	subset	of	transforma3ons	producing	good	
results	in	general		
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*	A.	Nisbet.	GAPS:	A	Compiler	Framework	for	Gene3c	Algorithm	(GA)	Op3mised	Parallelisa3on.	In	HPCN	Europe,	pages	
987–989,	1998	



Code	Transforma3on	Examples	

•  Loop	unrolling	of	rate	K	
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Code	Transforma3on	Examples	

•  Localize	declara3on	
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3.2. SOURCE TO SOURCE COMPILATION 273.2 Selecting the Pips transformations 3 IMPLEMENTATION DETAILS

#include <stdio.h>

int main(){
int i ;
int a [15];
for(i=0;i<15;i++){

a[ i]=i;
}
return 0;

}
(a) original program

#include <stdio.h>

int main(){
int i ;
int a [15];
//PIPS generated variable
int LU NUB0, LU IB0, LU IND0;

l99999: LU NUB0 = 15;
LU IB0 = 3;
for(LU IND0 = 0; LU IND0 <= LU IB0�1; LU IND0 += 1) {

a[LU IND0�1+0] = LU IND0�1+0;
l99998: ;

}
for(LU IND0 = LU IB0; LU IND0 <= LU NUB0�1; LU IND0 += 4) {

a[(LU IND0+0)�1+0] = (LU IND0+0)�1+0;
a[(LU IND0+1)�1+0] = (LU IND0+1)�1+0;
a[(LU IND0+2)�1+0] = (LU IND0+2)�1+0;
a[(LU IND0+3)�1+0] = (LU IND0+3)�1+0;

l99997: ;
}
i = 0+MAX0(LU NUB0, 0)�1;
return 0;

}
(b) transformed program with a rate of 4

Figure 4: Example of loop unrolling.

3.2.2 Inlining

The inlining pass includes a function’s code into a function that calls the latter. The figure 5 shows an
example of function inlining. Function inlining highly increases the µ1 complexity of the modules were
the function has been inlined, it also increases the µ6 complexity of these modules. On the other hand,
it reduces the µ5 complexity of the inlined function since it will be called in less functions. Moreover, the
other complexities can be increased for the modules where the function has been inlined as the inlined
function will bring new predicates, increase nesting levels, ...

Considering the µ1 or µ6 complexity, the inlining transformation has a high potency provided the
inlined function is long enough and its cost is free (it does not add many more operations in the program).
Its resilience is strong because reversing the transformation would require polynomial time and inter
procedural analysis of the program. If the definition of the inlined function is removed, then the resilience
is one-way.
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Figure 3.2: Unrolling a loop by rate 4.

• t2 Inlining: this transformation includes the source code of a function inside another
function that calls the first one.

• t3 Unfolding function calls: remove all function calls recursively from every module.
Same functionality as Inlining.

• t4 Localize Declaration: it moves definition of variables closer to where they are used.
It replaces global scope variables with many small scope variables. An example is
given in the figure 3.33.2 Selecting the Pips transformations 3 IMPLEMENTATION DETAILS

#include <stdio.h>

int main(){
int i , j ;
int a [15][15];

for(i=0;i<15;i++){
for(j=0;j<15;j++){

a[ i ][ j ] = i+j;
}

}

for(i=0;i<15;i++){
for(j=0;j<15;j++){

a[ i ][ j ] = i+j;
}

}

return 0;
}

(a) original program

int main(){
int i ;
int a [15][15];

for(i = 0; i <= 14; i += 1) {
//PIPS generated variable
int j ;
for(j = 0; j <= 14; j += 1)

a[ i ][ j ] = i+j;
}
for(i = 0; i <= 14; i += 1) {

//PIPS generated variable
int j ;
for(j = 0; j <= 14; j += 1)

a[ i ][ j ] = i+j;
}
return 0;

}
(b) transformed program

Figure 6: Example of localize_declarations.

3.2.5 Removing Comments

The remove_comments pass remove every commentaries from the code. Its does not have any impact of
the six complexities. Therefore, its potency is zero. However, its cost is free and its resilience is one-way.

3.2.6 Scrambling variable names

The scrambe_variable_names pass aims to remove any semantic content in the name of variables by
renaming them with random generated names. This pass is actually under development and was not in
the pool of transformations when running the experiments presented in this report.

3.2.7 Outlining

The outling pass defines a function which body is a loop or a loop nest selected in the given module.
That loop (or loop nest) is then replaced by a call to the created function. The figure 7 shows an example
of function outlining. This transformation increases the µ5 complexity.

Considering the µ5 complexity, the outlining transformation has a high potency and has a free cost.
Moreover, it has a strong resilience as inverting the transformation would require inter procedural analysis.
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Figure 3.3: Localize declaration.

• t5 Removing comments: vanishes every comment from the given block of code.

• t6 Outlining: a loop is replaced by a function whose body is the loop itself. After-
wards in the code the loop is replaces by a call to that function.



Code	Transforma3on	Examples	

•  Code	fla5ening	
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• t7 Scrambling variable names: renaming variables with random generated names.

• t8 Index set splitting: the transformation aims to separate a loop into two smaller
ones. The first will stop at a given point and the second will start from there.

• t9 Code flattening: tries to enlarge a given block code. It unrolls all loops between
static bounds and creates global variables replacing local ones. Example in figure
??.3.2 Selecting the Pips transformations 3 IMPLEMENTATION DETAILS

#include <stdio.h>

int main(){
int i ;
int a [4];

for(i=0;i<4;i++){
int k = i+5;
a[ i ] = 5;

}

if (a [0] == 7){
int k = a[1];

}
return 0;

}
(a) original program

#include <stdio.h>

int main() {
int i ;
int a [4];
//PIPS generated variable
int k, k 0;
k = 0+5;
a [0] = 5;
k = 1+5;
a [1] = 5;
k = 2+5;
a [2] = 5;
k = 3+5;
a [3] = 5;
if (a[0]==7)

k 0 = a[1];
return 0;

}
(b) transformed program

Figure 9: Example of code flattening.

3.2.10 Loop fusion

The loop_fusion pass tries to merge a given loop with the following loop provided both loops have the
same index and iteration set. Loop fusion is not an obfuscation transformation so to speak, but it is
interesting as it could break the semantic unity of two loops by merging them together and create blocks
of instructions that could be operated on by other transformations.

3.2.11 Parallel loop generation

Parallel loop generation is a sequence of transformations used in pypsearch to generate parallel loop
and apply OpenMP pragmas on them. The sequence of transformation is composed of the following
passes : privatize_module, coarse_grain_parallelization and ompify_code.

The privatize_module pass marks local variables of loops as private, preparing the module for the
passes coarse_grain_parallelization and ompify_code that will add OpenMP pragmas on the code
when possible.

This transformation introduces parallelism in the code but has a very low obfuscating power. Since
pragmas are not counted for the calculation of the µ1, this transformations does not change the com-
plexities. Reverting this transformation is quite easy, hence its resilience is trivial. However, OpenMP
introducing reduction can be harder to understand for readers who are not familiar with the OpenMP
standards, giving to this transformation a weak resilience.

On the other hand, introducing OpenMP pragma in the code can accelerate its execution time for
a reasonable cost, which can be interesting when applying many execution slowing obfuscating transfor-
mations.
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Figure 3.4: Example of code flattening.

• t10 Loop fusion: this pass attempts to merge two consecutive loops provided they
have the same index and identical iteration set.

• t11 Parallel loop generator: this transformation introduces parallelism to the code by
using a sequence of transformations and then applying OPENMP pragmas on them.
The main contribution of OPENMP pragmas is the reduction of the execution time
for an acceptable cost. Example in figure 3.5.3.3 Shadobf 3 IMPLEMENTATION DETAILS

int foo(int a [15][15], b [15][15]){
int i , j ;
int c [30];

for ( i=1;i<14;i++){
for (j=1;j<14;j++){

c[ i+j]=a[i�1][j]+b[i ][ j ]�a[ i ][ j+1];
}

}

return 0;
}

(a) original program

int foo(int a [15][15], int b [15][15]){
int i , j ;
int c [30];
for(i = 1; i <= 13; i += 1)

#pragma omp parallel for
for(j = 1; j <= 13; j += 1)

c[ i+j] = a[i�1][j]+b[i ][ j ]�a[ i ][ j+1];
return 0;

}
(b) transformed program

Figure 10: Example of parallel loop generation.

When running multi-objective evolutionary algorithms, adding transformations that do not change
the complexities is an interesting thing. The new individuals formed with these transformations will be
compared to other individuals whose complexities have been changed. They might even be preferred to
individuals ”more obfuscated” if they stay on a low-ranked Pareto front.

Transformation Quality Impact on complexities
Name Potency Resilience Cost µ1 µ2 µ3 µ4 µ5 µ6

Loop unrolling high(µ1) trivial free high low none low none low
Inlining high(all) strong one-way free high medium medium medium decreases high
Localize declarations medium(µ6) weak free none none none none none medium
Remove comments zero one-way free none none none none none none
Scramble variable names zero one-way free none none none none none none
Outlining medium(µ5) strong free none none decreases none medium none
Index set splitting low(µ2) weak free none low none none none none
Unfolding high(all) full free high medium medium medium decreases high
Flattening code medium(µ4) strong free medium none none medium none none
Loop fusion zero weak free none none none none none none
Parallel loop zero trivial weak free none none none none none none

Table 1: Selected transformations in PIPS and their relative impact on the chosen complexities.

3.2.12 Other transformations

The presented transformations feature the most common obfuscating transformations like function in-
lining or loop unrolling and new transformations should be added to get better results when running
evolutionary algorithms. For example, transformations increasing the µ3 complexity like inserting dead
code or increasing the µ4 complexity like replacing all variables by a global array of pointers to these
variables would have high resilience and great potency for a free cost.

��� 6KDGREI

3.3.1 Workspace management in Pyps

Pips passes are called through its Python front-end Pyps. The three main classes provided by Pyps are
the workspace class, the module class and the loop class. The workspace class represents a program
and the module class represents a function. The Pips passes are methods of the module and loop classes
(depending on whether the passes is applied on a loop or on a function).

Pyps and its modules provide several di�erent workspace classes, each one providing new function-
ality. To combine the functionalities of several workspaces, the user has to define a new workspace class
that will use multi inheritance to inherit the methods and attributes of its parents (see figure 11).

Special workspaces used in the project
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Figure 3.5: Example of code flattening.

3.3 Source Code Optimization using Evolutionary Algorithms

In this section we will give a brief overview of the framework that we used as a base to
our work.



Code	Transforma3on	Examples	

•  Parallel	loop	generator	
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• t7 Scrambling variable names: renaming variables with random generated names.

• t8 Index set splitting: the transformation aims to separate a loop into two smaller
ones. The first will stop at a given point and the second will start from there.

• t9 Code flattening: tries to enlarge a given block code. It unrolls all loops between
static bounds and creates global variables replacing local ones. Example in figure
??.3.2 Selecting the Pips transformations 3 IMPLEMENTATION DETAILS

#include <stdio.h>

int main(){
int i ;
int a [4];

for(i=0;i<4;i++){
int k = i+5;
a[ i ] = 5;

}

if (a [0] == 7){
int k = a[1];

}
return 0;

}
(a) original program

#include <stdio.h>

int main() {
int i ;
int a [4];
//PIPS generated variable
int k, k 0;
k = 0+5;
a [0] = 5;
k = 1+5;
a [1] = 5;
k = 2+5;
a [2] = 5;
k = 3+5;
a [3] = 5;
if (a[0]==7)

k 0 = a[1];
return 0;

}
(b) transformed program

Figure 9: Example of code flattening.

3.2.10 Loop fusion

The loop_fusion pass tries to merge a given loop with the following loop provided both loops have the
same index and iteration set. Loop fusion is not an obfuscation transformation so to speak, but it is
interesting as it could break the semantic unity of two loops by merging them together and create blocks
of instructions that could be operated on by other transformations.

3.2.11 Parallel loop generation

Parallel loop generation is a sequence of transformations used in pypsearch to generate parallel loop
and apply OpenMP pragmas on them. The sequence of transformation is composed of the following
passes : privatize_module, coarse_grain_parallelization and ompify_code.

The privatize_module pass marks local variables of loops as private, preparing the module for the
passes coarse_grain_parallelization and ompify_code that will add OpenMP pragmas on the code
when possible.

This transformation introduces parallelism in the code but has a very low obfuscating power. Since
pragmas are not counted for the calculation of the µ1, this transformations does not change the com-
plexities. Reverting this transformation is quite easy, hence its resilience is trivial. However, OpenMP
introducing reduction can be harder to understand for readers who are not familiar with the OpenMP
standards, giving to this transformation a weak resilience.

On the other hand, introducing OpenMP pragma in the code can accelerate its execution time for
a reasonable cost, which can be interesting when applying many execution slowing obfuscating transfor-
mations.
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• t10 Loop fusion: this pass attempts to merge two consecutive loops provided they
have the same index and identical iteration set.

• t11 Parallel loop generator: this transformation introduces parallelism to the code by
using a sequence of transformations and then applying OPENMP pragmas on them.
The main contribution of OPENMP pragmas is the reduction of the execution time
for an acceptable cost. Example in figure 3.5.3.3 Shadobf 3 IMPLEMENTATION DETAILS

int foo(int a [15][15], b [15][15]){
int i , j ;
int c [30];

for ( i=1;i<14;i++){
for (j=1;j<14;j++){

c[ i+j]=a[i�1][j]+b[i ][ j ]�a[ i ][ j+1];
}

}

return 0;
}

(a) original program

int foo(int a [15][15], int b [15][15]){
int i , j ;
int c [30];
for(i = 1; i <= 13; i += 1)

#pragma omp parallel for
for(j = 1; j <= 13; j += 1)

c[ i+j] = a[i�1][j]+b[i ][ j ]�a[ i ][ j+1];
return 0;

}
(b) transformed program

Figure 10: Example of parallel loop generation.

When running multi-objective evolutionary algorithms, adding transformations that do not change
the complexities is an interesting thing. The new individuals formed with these transformations will be
compared to other individuals whose complexities have been changed. They might even be preferred to
individuals ”more obfuscated” if they stay on a low-ranked Pareto front.

Transformation Quality Impact on complexities
Name Potency Resilience Cost µ1 µ2 µ3 µ4 µ5 µ6

Loop unrolling high(µ1) trivial free high low none low none low
Inlining high(all) strong one-way free high medium medium medium decreases high
Localize declarations medium(µ6) weak free none none none none none medium
Remove comments zero one-way free none none none none none none
Scramble variable names zero one-way free none none none none none none
Outlining medium(µ5) strong free none none decreases none medium none
Index set splitting low(µ2) weak free none low none none none none
Unfolding high(all) full free high medium medium medium decreases high
Flattening code medium(µ4) strong free medium none none medium none none
Loop fusion zero weak free none none none none none none
Parallel loop zero trivial weak free none none none none none none

Table 1: Selected transformations in PIPS and their relative impact on the chosen complexities.

3.2.12 Other transformations

The presented transformations feature the most common obfuscating transformations like function in-
lining or loop unrolling and new transformations should be added to get better results when running
evolutionary algorithms. For example, transformations increasing the µ3 complexity like inserting dead
code or increasing the µ4 complexity like replacing all variables by a global array of pointers to these
variables would have high resilience and great potency for a free cost.
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3.3.1 Workspace management in Pyps

Pips passes are called through its Python front-end Pyps. The three main classes provided by Pyps are
the workspace class, the module class and the loop class. The workspace class represents a program
and the module class represents a function. The Pips passes are methods of the module and loop classes
(depending on whether the passes is applied on a loop or on a function).

Pyps and its modules provide several di�erent workspace classes, each one providing new function-
ality. To combine the functionalities of several workspaces, the user has to define a new workspace class
that will use multi inheritance to inherit the methods and attributes of its parents (see figure 11).

Special workspaces used in the project
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Figure 3.5: Example of code flattening.

3.3 Source Code Optimization using Evolutionary Algorithms

In this section we will give a brief overview of the framework that we used as a base to
our work.



About	LLVM	

•  Collec3on	of	modular/reusable	compiler	and	
toolchain	technologies	

•  Mul3ple	LLVM	front-ends.	Ex:	Clang	
•  Supports	just-in-3me	op3miza3on	and	
compila3on	

•  LLVM	core	
–  Intermediate	representa3on	(IR)	of	the	program	
– 54	built-in	transforma3ons	(called	passes)	
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LLVM	IR	
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What	is	mul3-objec3ve	op3miza3on?	

•  Many	real-world	op3miza3on	problems	require	to	op3mize	more	
than	one	objec#ve	at	the	same	3me	
–  These	objec3ves	are	usually	in	conflict	among	them	
–  Improving	one	means	worsening	the	others	

•  Mul3-objec3ve	(or	mul3-criteria)	op3miza3on	
–  Discipline	focused	on	solving	mul3objec3ve	op3miza3on	problems	

(MOPs)	

•  Example:	car	trip	between	two	ci3es	
–  Objec3ves		

•  Minimizing	3me	
•  Minimizing	fuel	consump3on	

–  Decision	variables:		
•  Speed,	instant	consump3on,	...	
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What	is	mul3-objec3ve	op3miza3on?	

•  In	single-objec3ve		
op3miza3on	(SO)	
-  The	op3mal	result	is		

one	single	solu3on	

•  In	mul3-objec3ve		
op3miza3on	(MO)	
-  	The	op3mal	result	

(Pareto	op3mal	set)	is	a	
set	of	(non-dominated)	
solu3ons		
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The	dominance	concept	
•  In	single-objec3ve		

op3miza3on	(SO)	
– We	look	for	a	single	
solu3on	

–  The	concept	of	“A	be5er	
than	B”	is	trivial	

•  In	mul3-objec3ve		
op3miza3on	(MO)	
– We	are	not	restricted	to	
find	a	unique	op3mal	
solu3on	

–  The	concept	of	“A	be5er	
than	B”	is	not	trivial	
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MO	Op3miza3on	and	Decision	Making	

•  Finding	the	Pareto	front	
of	a	problem	is	not	the	
last	step	in	mul3-
objec3ve	op3miza3on	

•  In	prac3ce,	an	expert	in	
the	domain	(the	
decision	maker)	has	to	
choose	the	best	trade-
off	solu3on	
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MO	Op3miza3on	and	Decision	Making	

•  In	the	example	of	the	
car	trip	
–  If	3me	is	important		

•  Choose	(5h,	40l)	
–  If	consump3on	is	
important:	

•  Choose	(8h,	20l)	
–  Compromise	solu3on:	

•  (6h,	30l)	
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The	Pareto	Front	

•  The	goal	is	to	find	the	Pareto	front	
•  Exact	techniques	are	not	useful	in	most	cases	

–  	NP-hard	complexity,	non-linearity,		epistasis	,	…	

•  Rely	on	approxima3on	techniques	
•  Two	key	features	to	measure	the	quality	of	
solu3ons	

•  Convergence	
•  Diversity	
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The	Pareto	Front	
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Pareto	Front	Example	(I)	

•  Bi-objec3ve	problem	
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Pareto	Front	Example	(II)	

•  Tri-objec3ve	problem	
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NSGAII	Algorithm	for	MO	Problems	

•  Non-dominated	Sor3ng	Gene3c	Algorithm	
•  Proposed	by	K.	Deb	(2002)	
•  The	most	popular	metaheuris3c	for	mul3-
objec3ve	op3miza3on	

•  Features	
– Ranking	using	non-dominated	sor3ng	
– Crowding	distance	as	density	es3mator			

1st	Summer	School	on	SBSE	 28	



NSGAII	-	Ranking	
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f2	

f1	

Rank	1	

Rank	2	

Rank	3	



NSGAII	-	Crowding	
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Area	represen3ng	the	crowding	distance	of	point	A	

Area	represen3ng	the	crowding	distance	of	point	B	

f2	

f1	

B	

A	

Point	B	is	in	a	less	crowded	region	than	point	A	



NSGAII	Algorithm	for	MO	Problems	
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Outline	

•  Context	and	mo3va3on	
•  The	code	op3miza3on	problem	
•  Introduc3on	to	mul3-objec3ve	op3miza3on	
•  The	Evo-LLVM	compiler	framework	
•  Preliminary	results	
•  Conclusion	and	perspec3ves	
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Evo-LLVM	overview	
•  Exploit	the	flexibility	offered	by	LLVM	to	
manipulate	the	IR	

•  Take	profit	from	applying	a	sequence	of	
supported	transforms	

•  Evaluate	impact	on	(at	least)	two	objec3ves:		
–  Energy	effciency	of	the	produced	executable	
–  Run	3me		

•  Mul3	Objec3ve	Evolu3onary	Algorithms	(MOEAs)		
–  Build	approximated	Pareto-op3mal	solu3ons	
–  In	this	work:	NSGA-II	
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Evo-LLVM	
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int a = 89;
int b = 42;
void funcf(a,b)
{
   printf("%d", a);
   printf("%d", b);
}

myfile.c

LLVM parser

Initialisation of the population 
(copy of initial individual)

Intermediate Represenation (IR)

Evo-LLVM

myfile_opt1.c

Conversion
    to files

Evolutionary
  Algorithm

Evaluation

Selection

 Mutation
(Transfor-
mations)

Repro-
duction
Crossover

Population

3, 1, 67, 2

9, 56, 1

899, 7, 56, 42

9, 32, 1 3, 1, 67, 29, 56, 1

899, 7, 56, 42

myfile_opt2.c

myfile_opt3.js

PopulationPopulationPopulation



Representa3on	of	solu3ons	

•  Given	a	source	program	P
•  Individuals	(I)	

– Composed	by	
•  LLVM	byte	code	of	P 	
•  Sequence	of	applied	transforms		

–  Variable	length	

– Features	
•  Seman3cally	equivalent	to	P	
•  Easily	built	from	P	
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Parameters	of	NSGAII	
•  Popula#on	size:	50	individuals	
•  Ini#al	popula#on:	Individuals	are	P	with	one	
random	transforma3on	

•  Muta#ons:	on	each	element	of	the	sequence	
with	prob.	Pm	=	0.1	
–  Change	the	transforma3on	by	another	randomly	
chosen	one	

– Or	append	a	new	transforma3on	
•  Cross-over:	Single-point	cross-over	

–  Limits	the	break	of	“good”	sequences		
•  Maximum	number	of	genera#ons:	100	
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Benchmark	

•  Quicksort	algorithm	
–  Loops	
– Memory	alloca3ons	
–  Recursion	
–  Branching	

•  Test	cases:	strings	of	100	and	1000	numbers	
–  Random	
–  Random,	but	with	some	duplicates	
–  Random,	but	sorted:	small-to-big	
–  Random,	but	sorted:	big-to-small	
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Fitness	

•  Two	objec3ves	
– Execu3on	3me	

•  Average	run3me	for	each	test-case	
–  100	runs	
–  Sequen3ally	executed	

– Power	consump3on	
•  Average	power	consump3on	for	each	test-case	
•  Power	consump3on	based	on	es3ma3ons	
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Es3ma3on	of	Power	Consump3on	

•  Evaluated	per	evalua3on	process	(i.e.,	per	pid)	
–  Based	on	ra3o	of	the	total	power	for	100	consecu3ve	runs		
–  Focus	on	rela#ve	Avg.	CPU	&	memory	usage	per	pid		

•  /proc/<pid>/stat		&		/proc/<pid>/statm		&		/proc/meminfo	
Power(pid)	=	[0.58	X	𝛂cpu(pid)	+	0.28	X	𝛂mem(pid)]	Ptotal		cpu(pid)	+	0.28	X	𝛂mem(pid)]	Ptotal		mem(pid)]	Ptotal		
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and learn power models using available platform instrumen-
tation.

To address the second challenge, we leverage the knowledge
that the hypervisor has regarding scheduling of resources for VMs.
Again, complete visibility into all resources is lacking and trade-
offs in instrumentation overhead and accuracy must be made.

4. JOULEMETER SYSTEM DESIGN
The largest dynamic energy consuming resources in a computer

server (without displays) are the processor, memory, and disk. The
server of course has a non-trivial idle energy consumption, often
exceeding 50% of its peak power, but the idle energy is relatively
static and can be measured in hardware. The energy impact of the
VM can thus be considered in terms of the dynamic energy used.

To visualize the energy impact of the processor, memory, and
disk subsystems in a realistic data center server, consider the work-
loads and power data shown in Figure 2. The figure shows the

Figure 2: Power impact of the three major system resources.
While memory throughput shown above is obtained using
hardware specific performance counters, a simpler approach
to infer memory energy impact is presented in Section 4.2 to
avoid such hardware specific instrumentation.

power consumption measured in hardware for a Dell PowerEdge
server with two quad core processors, 12GB RAM, and four 300GB
disks. The figure also shows the processor, memory and disk uti-
lizations over time. The workload shown was specifically gener-
ated to first exercise the processor (denoted Phase I in the figure),
then the memory (Phase II), followed by the disk (Phase III), and fi-
nally a combination of all three resources. The resource utilizations
and power data are aligned in time. It is easy to see the increase
in power with varying processor utilization in phase I. Similarly,
phases II and III show the energy impacts of memory and disk re-
spectively. The dynamic energies of these three resources under
this workload are shown in Figure 3.

Prior work has proposed various power models for deriving full
system energy usage [2, 5, 6, 3] and some of these models have
been compared in [23]. The models used are linear. As we see
in experiments and as is consistent with prior work, the linearity
assumptions made in these models do lead to errors. The magnitude
of errors was small compared to full system energy but is much
larger compared to the energy used by an individual VM. Also, the
errors reported were averaged across multiple workloads but can
be higher on specific workloads. We discuss methods to overcome
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Figure 3: Relative power impact of different resources on dy-
namic power consumption.

those errors without requiring extensive additional instrumentation.
Our approach takes advantage of built-in server power sensors that
were not available in older servers used in prior work.

4.1 Practical Power Models

4.1.1 CPU
The power usage of the CPU depends on several factors, such as

the subunits within the processor that are active, specific instruc-
tions executed, on-chip cache usage, frequency used, denoted by
Performance states, or P-states, corresponding to different DVFS
frequencies and Throttle-states, or T-states, corresponding to DFS
frequencies. An accurate power estimation considering these fac-
tors can be achieved using a cycle accurate simulator. However,
that requires a complete architectural model of the processor, and
has high processing overheads, making it unsuitable for runtime
VM power metering.

A lighter weight alternative is to track processor active and sleep
times, often available easily from the OS as processor utilization.
Let u

cpu

denote processor utilization. Then, in this approach, for a
given processor frequency, the CPU energy model becomes:

E

cpu

= ↵

cpu

u

cpu

+ �

cpu

(1)

where ↵

cpu

and �

cpu

are model specific constant. The method to
learn parameters the model constants is described in Section 4.2
together with the power models for other resources.

Assigning the CPU usage to relevant VMs requires accounting
for the exact chip resources used by the VM, including the shared
caches and processing components. We choose a light weight ap-
proach that simply tracks when a VM is active on a processor
core. The energy used can be tracked using Equation (1) during
the durations when the VM is active on the processor. The Win-
dows Hyper-V hypervisor creates virtual processors that can span
a whole or fractional logical core1 and allocates the specified num-
ber of these to each VM. Hyper-V allows tracking the usage of
the virtual processors from within the root VM through its perfor-
mance counters (under its Hyper-V Hypervisor Virtual
Processor counter category, with counter instances denoting each
individual guest VM virtual processor, and a dedicated category
named Hyper-V Hypervisor Root Virtual Processor
for the root VM’s virtual processors). Using the hypervisor VM
settings that relate the virtual cores to a whole or fractional logical
core, the virtual processor usage can be mapped to physical proces-
sor utilization. Similar data is also available for the Xen hypervisor,
for instance, through Xentrace. If the processor utilization of VM
A, is represented by u

cpu,A

, then the energy usage of a VM A,
denoted E

cpu,A

, becomes:

E

cpu,A

= ↵

cpu

u

cpu,A

(2)
1A logical core may differ from a physical core when the processor
uses hyper-threading, such as on the Intel Nehalem.

N.	Kothari	et	al.,	Virtual	Machine	Power	Metering	and	Provisioning,	ACM	Symposium	on	Cloud	Compu&ng,	2010	



1st	Summer	School	on	SBSE	 40	



Es3ma3on	of	Power	Consump3on	
•  Op3on	1:	Intelligent	Plaxorm	Management	
Interface	(IPMI)	
– Defines	a	set	of	interfaces	for	out-of-band	
management	of	computer	systems	

•  Connec3on	to	HW	and	not	OS	
–  Provides	power	measurement	of	the	card	

•  Op3on	2:	Build	high	precision	power	metering	
device	 1st	Summer	School	on	SBSE	 41	

Calxeda	EnergyCard	module	
(4	ARM	Cortex	A9	
processors)	



Conclusions	
•  Evo-LLVM	evolves	a	given	source	code	to	
produce	energy	aware	versions	
– Use	MO	to	look	for	appropriate	transforma3on	
sequences	

–  Energy	and	performance	metrics	for	fitness	evalua3on	
– Op3miza3on	is	bound	to	a	given	compu3ng	system	

•  Preliminary	experiments	show	promising	results	
–  S3ll,	long	way	ahead	

•  Need	be5er	energy	monitoring	
•  Improve	experimental	seyngs	
•  Only	applied	to	a	pedagogical	example	(quicksort)	
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Thanks!	
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