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Energy in Today’s Computing Systems

* Energy consumption
— Key issue in modern computer systems
— Increasing computing / storage needs
 Virtualization, simulation, Big Data analytics, ...
* Energy efficiency challenge

— 2020 Exa-scale challenge: 1 EFLOPS in 20 MW
* Today’s most efficient supercomputer: 314 MW

— Foreseen combined solution
* Involving HW / Middleware / Software improvements



Energy in Today’s Computing Systems

* Achieving energy efficiency in HPC
— Reduce operating costs
— Reduce impact on environment

— Become more competitive



Energy in Today’s Computing Systems

* Not only HPC and large servers are affected

— Personal computers
— Battery powered devices XY | E—

— Any other electronic devices
* Internet of things

I B

* Advantages Dl

— Longer operation times

— Adding sensors and computing capacity to things
* Making intelligent things
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Energy Management

 Recent HW supports energy management at
various levels

— Dynamic scaling of the power (or freq) of CPU/
Memory

— Integrated way to handle idle state

— Embedded sensor to measure energy and
performance metrics

 Power drainage of a system is closely related
to workload
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Energy Management

* Reserach question
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Energy Management

* |n this talk: EvoLLVM

— Goal: Evolve a given source code to produce
energy-aware versions
— Tools
* LLVM Compiler Infrastructure
* Multi-objective optimization algorithms
— Features

* Combining energy and performance metrics for
evaluation of programs

» Software is optimized for a specific architecture
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Code optimization

* Implemented using sequence of optimizing
transforms
— Produce a semantically equivalent output program
— Transforms order matters
— NP-complete problem*

 Thus modern compilers (GCC, LLVM) rely on
static heuristics

— Involves subset of transformations producing good
results in general

* A. Nisbet. GAPS: A Compiler Framework for Genetic Algorithm (GA) Optimised Parallelisation. In HPCN Europe, pages

987-989, 1998
1st Summer School on SBSE
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Code Transformation Examples

* Loop unrolling of rate K

Normal loop After loop unrolling
int x;
for (x = 0; x < 100; x += 5)
int x; {
for (x = 0; x < 100; x++) delete(Xx);
{ delete(x + 1);
delete(x); delete(x + 2);
} delete(x + 3);

delete(x + 4);



Code Transformation Examples

* Localize declaration

#include <stdio.h>

int main(){
int i,j;
int a [15][15];

for(i=0;i<15;i++){
for (j=05j< 15;j++){
ali][j] = i+j;
}
¥

for(i=0;i<15;i++){
for(j=0;j<15;j++){
ali][j] = i+j;
}
}

return 0;

(a) original program

int main(){

int i;
int a [15][15];

for(i =0;i <=14;i+=1){
//PIPS generated variable
int j;
for(j =0;j <=14;j+=1)
: a[i][j] = i+j;

for(i =0;i <=14;i4=1) {
//PIPS generated variable
int j;
for(j =0;j <=14;j+=1)
) ali][j] = i+j;

return 0;

(b) transformed program



Code Transformation Examples

* Code flattening

#include <stdio.h>

#include <stdio.h> int main() {

. . int i;
i Tnan%(){ int a [4];
}nt b //PIPS generated variable
int a [4]; int k, k 0;
P k = 0+5;
for(i=0;i<4;i++){ a[0) _+5"
int k = i+5; S
a[i] = b; a[l] :5’.
) k = 245;
. al2| = b5;
if (al0] == 7){ o =
int k = a[l]; al3) = 5"
} : __
return 0; i (i[(())]_—_a [)1]
} return 0;
(a) original program }

(b) transformed program



Code Transformation Examples

* Parallel loop generator

int foo(int a [15][15], b [15][15]){

int i,j; . . .
int c [30]; 1ntifl(::0§1n§.a [15][15], int b [15][15]){
int c [30];

for (i=1;i<14;i++){
for (j=1;j<14;j++){
cli+j]=ali—1][j]+bli][j]*ali][j+

for(i =1;i <=13;i+=1)
#pragma omp parallel for
for(j =1;j <=13;j+=1)

o cli+i] = ali=1][i]+b[i][i]+ali ][ i+1];
return 0;
return O; }
} (b) transformed program

(a) original program



About LLVM

Collection of modular/reusable compiler and
toolchain technologies

Multiple LLVM front-ends. Ex: Clang

Supports just-in-time optimization and
compilation

LLVM core

— Intermediate representation (IR) of the program
— 54 built-in transformations (called passes)
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LLVM IR

int mul_add(int x, int y, int z) {
return x * y + z;

}

4

define 132 @mul_add(i32 %x, i32 %y, 132 %z) {
entry:

htmp = mul i32 %x, %y

%»tmp2 = add i32 tmp, %=z

ret i32 Jtmp2
}

1st Summer School on SBSE
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What is multi-objective optimization?

Many real-world optimization problems require to optimize more
than one objective at the same time

— These objectives are usually in conflict among them
— Improving one means worsening the others

Multi-objective (or multi-criteria) optimization
— Discipline focused on solving multiobjective optimization problems

(MOPs)
Time] Non-dominated
Example: car trip between two cities Dominated

— Objectives 8 (7h, 33))

« Minimizing time 7

* Minimizing fuel consumption 6
— Decision variables:

e Speed, instant consumption, ... 3

25 30 35 40 Fuel



What is multi-objective optimization?

®* Insingle-objective ®* In multi-objective
optimization (SO) optimization (MO)
-  The optimal result is -  The optimal result
one single solution (Pareto optimal set) is a
set of (non-dominated)
solutions

X F(X) X F(X), G(X), ...
(Solution space) (Objective space) (Solution space) Objective space
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The dominance concept

* Insingle-objective * |n multi-objective
optimization (SO) optimization (MO)
— We look for a single — We are not restricted to
solution find a unique optimal
— The concept of “A better solution
than B” is trivial — The concept of “A better
than B” is not trivial
A 2 |3 (4 |5 A 3 |7 |4 |8 A 119 (4 |5
B 4 |6 |5 |7 B 2 |1 (2 |5 B 3 |6 |5 |7
A is better than B B is better than A N‘o/ne is better

A-andB are NON-DOMINATED




MO Optimization and Decision Making

* Finding the Pareto front < In practice, an expertin

of a problem is not the the domain (the
last step in multi- decision maker) has to
objective optimization choose the best trade-

off solution




MO Optimization and Decision Making

* In the example of the

car trip

— If time is important
* Choose (5h, 40I)

— If consumption is
important:
* Choose (8h, 20I)

— Compromise solution:

* (6h, 30I)

Time!

(8h, 25I)
@

(6h, 301)
(5.5h, 35I)
® 5h, 40l
.'(, )
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The Pareto Front

The goal is to find the Pareto front

Exact techniques are not useful in most cases
— NP-hard complexity, non-linearity, epistasis, ...
Rely on approximation techniques

Two key features to measure the quality of
solutions

* Convergence
* Diversity



The Pareto Front

front returned
f, by the optimizer
~
.
S, true Parete ont
N - ‘ :
Bad diversity Bad convergence Ideal case
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Pareto Front Example (1)

* Bi-objective problem

Min F
()
)

Subject to:
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Pareto Front Example (lIl)

* Tri-objective problem
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NSGAII Algorithm for MO Problems

* Non-dominated Sorting Genetic Algorithm
* Proposed by K. Deb (2002)

* The most popular metaheuristic for multi-
objective optimization

* Features

— Ranking using non-dominated sorting
— Crowding distance as density estimator



NSGAII - Ranking

@ O O Rank1
O . O . Rank 2
O .. O () Rank3
© e
©
f3
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NSGAII - Crowding

f, Area representing the crowding distance of point A

/

Area representing the crowding distance of point B

/

f3

Point B is in a less crowded region than point A



NSGAII Algorithm for MO Problems
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Evo-LLVM overview

Exploit the flexibility offered by LLVM to
manipulate the IR

Take profit from applying a sequence of
supported transforms

Evaluate impact on (at least) two objectives:
— Energy effciency of the produced executable

— Run time

Multi Objective Evolutionary Algorithms (MOEAS)
— Build approximated Pareto-optimal solutions
— In this work: NSGA-II



Evo-LLVM

Evo-LLVM

Evolutionary
myfile.c Algorithm myfile_optl.c
e o s A
void funcf(a,b) Y=\ > _— € ) - >
¥ i, a P r ~ ot R S ”
printf(*%d", a); - Ve U
printf("%d", b); " ad *
! Conversion
LLVM parser Intermediate Represenation (IR) to files
Initialisation of the population
(copy of initial individual)
\ 4 myfile_opt2.c
Mutation Reprlo—
(Transfor- duction ) N
mations) Crossover Selection
0 ¢ U>
- 'S
‘i’\/ L g
myfile_opt3.c
Population Population Population Population
T
Tt * Ly
(=)
S
Evaluation
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Representation of solutions

* Given a source program P

* Individuals (I)

— Composed by
* LLVM byte code of P

» Sequence of applied transforms
— Variable length

— Features

* Semantically equivalent to P
e Easily built from P



Parameters of NSGAII

Population size: 50 individuals

Initial population: Individuals are P with one
random transformation

Mutations: on each element of the sequence
with prob. P, = 0.1

— Change the transformation by another randomly
chosen one

— Or append a new transformation
Cross-over: Single-point cross-over
— Limits the break of “good” sequences

Maximum number of generations: 100



Benchmark

* Quicksort algorithm
— Loops
— Memory allocations
— Recursion
— Branching

e Test cases: strings of 100 and 1000 numbers
— Random
— Random, but with some duplicates
— Random, but sorted: small-to-big
— Random, but sorted: big-to-small



Fitness

 Two objectives

— Execution time

* Average runtime for each test-case
— 100 runs
— Sequentially executed

— Power consumption

* Average power consumption for each test-case
* Power consumption based on estimations



Estimation of Power Consumption

* Evaluated per evaluation process (i.e., per pid)
— Based on ratio of the total power for 100 consecutive runs

— Focus on relative Avg. CPU & memory usage per pid
» /proc/<pid>/stat & /proc/<pid>/statm & /proc/meminfo
Power(pid) = [0.58 X a_, (pid) + 0.28 X a,....,..(pid)] P, ;.

cpu

80 -

OII-

RAM Disk uCPU Memory M Disk

Power (W)
5O
© O

N
o
1

N. Kothari et al., Virtual Machine Power Metering and Provisioning, ACM Symposium on Cloud Computing, 2010
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power cosnunption
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Estimation of Power Consumption

* Option 1: Intelligent Platform Management
Interface (IPMI)

— Defines a set of interfaces for out-of-band
management of computer systems

e Connection to HW and not OS
— Provides power measurement of the card

Calxeda EnergyCard module
(4 ARM Cortex A9
processors)

socz  SOC1

e Option 2: Build high precision power metering
d eVI Ce 1st Summer School on SBSE 41



Conclusions

Evo-LLVM evolves a given source code to
produce energy aware versions

— Use MO to look for appropriate transformation
segquences

— Energy and performance metrics for fitness evaluation
— Optimization is bound to a given computing system

Preliminary experiments show promising results

— Still, long way ahead
* Need better energy monitoring
* Improve experimental settings
* Only applied to a pedagogical example (quicksort)
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Thanks!

Bernabé Dorronsoro
University of Cadiz
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